Cylindrical Coordinates (Figure B.2)

Position: x = (R,¢,z) = Rep+2ze,;; x = Rcose, ¥y = Rsing, z = z; or R = /x2+17?,
¢ = tan~'(y/x) ‘
Unit vectors: eg = e, cos ¢ + e, sin ¢, e, = —e, sin ¢ + €, cos ¢, e; = same as Cartesian

Unit vector dependencies: deg/dR = 0, deg/d¢p = e,, der/dz = 0
de,/0R = 0, de,/dp = —eg, de,/dz = 0
de;/0R = 0, de,/d¢p = 0, de,;/dz = 0
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Surface integral, S, of AR, §, z) over the cylinder defined by

27 —+oo

R:E:S:/ / f(E 0,2Edzde

p=0 z=—

Gradient Operator: V = eg

Surface integral, S, of f(R, 6, z) over the half plane defined by

-0 40
=y 5 = / / f(R,¥,z)dzdR
R=0 z=—c
+® 27
Surface integral, S, of AR, 6, z) over the plane defined byz=145 = / / f(R,9,8)R dodR
R=0 =0

—+oe +oo 2
Volume integral, V, of AR, 6, z) over all space: V = / / / f(R,¢,2)RdpdRdz

z=— R-0 -0



Cylindrical Coordinates (Figure B.2)

Position and velocity vectors: x = (R, ¢, 7) = Reg + zez; U = (UR, Uy, Uz) = URCR T+ UgCqp + 1z€:

Gradient of a scalar y: V¢ = exgl\g + e(,,ll2 Z‘I/ + z%‘ij

Laplacian of a scalar y: vy = %5% (R g}%) + 1:2 gip\p + ?:Zf

Divergence of a vector: V-u = —115 % (Rug) + 112 aauc;p aauzz

Curl of a vector, vorticity: w =V X u=eg (112%1; a;:") € (%—%%) e: (}R%—Q—%a;z )
Laplacian of a vector: VZu = ep (VZMR - }I[{—I; — Rz'z" %) +e, (Vzu(p 132 aauR - %—‘;) +e,V2u.

Strain rate S;; and viscous stress T for an incompressible fluid where t;; = 2uSjj:

dug 1 1 ou, ug 1 _Ou, 1
Sw=gR "z SwTRap TR 2™ 2w
S RO uq,) _1_%__1_1 S __1_—611Z 1 du —11
kg = 26R(R Wdp 2 "™ " 2Rdp 20z 2u"
_1(un 0w _ 1
R = ( az 6R> o=
Equation of contmulty (RpuR) + (p11¢) + (puz) =0

RaR

Navier-Stokes equations with constant p, constant 7, and no body force:

u
%_{_( Vug — = = —EQBJrV(VzuR—EE—-Z—%)

o Uty _ 1 dp B 2 dur U,
V)i = —— = Viuy+—=S—-=:
at+(u Yu, + R pRGqu ll¢+R2 o R)’
du; . p 2
3 —+ (u-V)u, = — + vVu,

d u, 0 d 190 d 1 8 &
h V = bk Sl — 2 — —
where: u- ‘ uRaR~|— R 6g0+u and V R oK (RGR) +R2 6<p2+623'
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FIGURE 9.6 Circular Couette flow. Viscous fluid flows in the gap between an inner cylinder with radius R; that
rotates at angular speed ©; and an outer cylinder with radius R, that rotates at angular speed Q.
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free surface

FIGURE 9.7 Rotation of a solid cylinder of radius R in an infinite body of viscous fluid. If gravity pc—=
downward along the cylinder’s axis, the shape of a free surface pierced by the cylinder is also indicated. The =~
field is viscous but urotatxonal
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Fluid Mechanics, 6™ Ed. Kundu, Cohen, and Dowling

Exercise 9.15. Consider a solid cylinder of radius a, steadily rotating at angular speed €2 in an
infinite viscous fluid. The steady solution is irrotational: u= Qa*/R. Show that the work done by
the external agent in maintaining the flow (namely, the value of 2RueT,s at R = a) equals the
viscous dissipation rate of fluid kinetic energy in the flow field.

Solution 9.15. Using the given velocity field, the shear stress is:

d (4, 2 0 (1 2 1
2oy = R 2| e PR — | m 20007 .
% “RaR(R) : aR(Rz) R

The work done per unit height = {Znarmum}k =2ma-2uQ- Qa = 4nua*Q* .

=a
From (4.58) the viscous dissipation rate of kinetic energy per unit volume for an
incompressible flow is pe =2uS,S,, where £ is the viscous dissipation of kinetic energy per unit

mass. For the given flow field there is only one non-zero independent strain component:
2 -
Spp =S, K2 (fﬂ)=%’-k . ( . )=—Q 2 L

ij?

*“3@&R\R)" 2 ®R\R) " F _7
Therefore: T W e =
4 \,-'L\’ J ), Vo P S
a
pe =2uS;S; = 2u(S, + Siy ) = 4uQ?’ =
so the kinetic energy dissipation rate per unit height is: | O, Gaw .o
% % 1 2.2
pe2nRdR = 8muQ’a’ [ — dR = 4nuQ’a’, _
f" {R3 :Ql\ "\,-'\'i = \(_Ld\‘{LAkp\

which equals the work done turning the cylinder.
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FIGURE 5.2 The steady flow field of a viscous liquid in a steadily rotating tank is solid body rotation. When the

axis of rotation is parallel to the (downward) gravitational acceleration, surfaces of constant pressure in the liquid are
paraboloids of revolution.
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a—xj(UiUij) = Oij dx; + Ui 0x;
Total work Deformatio Increase of

of surface n work w/o KE since
force a and lost contributes
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energy
aU;

l
% o, = O (e + wij) = oyje
j
g;jw;j = 0 since itis the product of a symmetric and an anti-symmetric tensor.

aU; 2
Oiji—= [— (p +—,uVQ) 511 + Z/JSU] gij
Xj 3

an 2 2
Uija—xj =—pV- U+ 2ue;je; — §H(V -U)

Since Sijaij =& = V- g @

o,
Uija—xj— —pV-U+o



