Chapters 1 Preliminary Concepts & 2 Fundamental
Equations of Compressible Viscous Flow

(5) Vorticity Theorems

The incompressible flow momentum equations focus attention
on V and p and explain the flow pattern in terms of inertia,
pressure, gravity, and viscous forces. Alternatively, one can
focus attention on o and explain the flow pattern in terms of the
rate of change, deforming, and diffusion of @ by way of the
vorticity equation. As will be shown, the existence of
generally indicates that viscous effects are important since fluid
particles can only be set into rotation by viscous forces. Thus,
the importance of this topic (for potential flow) is to demonstrate
that under most circumstances, an inviscid flow can also be
considered irrotational.

1. Vorticity Kinematics
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A quantity intimately tied with vorticity is the circulation:

r=4¢v-dx (/2*\\&3‘”
X -

Stokes Theorem: \ v

pa-dx=[Vxa dA

=9V -dx=[,VxV-dA=[, 0 ndA

Which shows that if ® =0, i.e., if the flow Is irrotational,
then I" = 0 also.

Vortex line = lines which are everywhere tangent to the
vorticity vector.
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Next, we shall see that vorticity and vortex lines must
obey certain properties known as the Helmholtz vorticity
theorems, which have great physical significance.
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The first is the result of its very definition:
w=VxV
V.w=V-(VXV)=0 Vector identity
l.e., the vorticity is divergence-free, which means that
there can be no sources or sinks of vorticity within the
fluid itself.
Helmholtz Theorem #1: a vortex line cannot end in the

fluid. It must form a closed path (smoke ring), end at a
boundary, solid or free surface, or go to infinity.

Propeller vortex iIs known

Ef | to drift up towards the free

surface.

The second follows from the first and using the
divergence theorem:

fV-QdV= w-ndAd =0
v A



Application to a vortex tube results in the following.

Minus sign due j w - ndA + J w- -ndd =0
to outward Jai — Ja
normal — - T,

Or rl: FZ

Helmholtz Theorem #2:

The circulation around a given vortex line (i.e., the
strength of the vortex tube) is constant along its length.

This result can be put in the form of a simple one-
dimensional incompressible continuity equation. Define
o1 and ®2 as the average vorticity across Ai; and Ao,
respectively.

®m1A1 = m2A2

which relates the vorticity strength to the cross-sectional
area changes of the tube.



2. Vortex dynamics

Consider the substantial derivative of the circulation
assuming incompressible flow and conservative body
forces.
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FIGURE 5.4 Contour geometry for the Proof of Kelvin’s circulation theorem. Here the short segment dx of the
contour C moves with the fluid so that D(dx)/Dt = du.

From the N-S equations we have

%zlf_@_H,VZV Define f = -V for
bt p= p > the gravitational body
= -V (cb + ;) + V72V force d=pgz.
Also, =dx = d=2=d
Dt == pt  —
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—Eﬁ[—d¢—?+5dv l+v99|7 V- dx

=0 since integration is around a closed
contour and @, p, & V are single valued

ll))—:= gﬁ[sz\K]-dgz —vPV X w-dx
vx(@xV)=v(V-V)-VV
— =
Implication: The circulation around a material loop of

particles changes only if the net viscous force on those
particles gives a nonzero integral.




If v=0 or w =0 (i.e., Inviscid or irrotational flow,
respectively) then

or The circulation of a
— =0 material loop never
bt changes.

Kelvins Circulation Theorem: for an ideal fluid (i.e.,
inviscid, incompressible, and irrotational) acted upon by
conservative body forces (e.g., gravity) the circulation is
constant about any closed material contour moving with
the fluid, which leads to:

Helmholtz Theorem #3: No fluid particle can have
rotation if it did not originally rotate. Or, equivalently, in
the absence of rotational forces, a fluid that is initially
Irrotational remains irrotational. In general, we can
conclude that vortices are preserved as time passes. Only
through the action of viscosity can they decay or
disappear.

Kelvins Circulation Theorem and Helmholtz Theorem #3
are very important in the study of inviscid flow. The
Important conclusion is reached that a fluid that is initially
Irrotational remains irrotational, which is the justification
for ideal-flow theory.



Production of Vorticity at Walls: A solid wall produces
vorticity that emanates into the fluid due to the no slip
condition/shear stress

1) Limiting v and o lines on a solid wall

streamline

F . " ~
\'IIGUI'{E 3.5. Streamline geometry. The arc-length element of a streamline, ds, is locally tangent to the fluid
elocity u so its components and the components of the velocity must follow (3.7). ’ )

uxds=0= (vdz—wdy)i+ (wdx —udz)j+ (udy —vdx)k

i e. alon dy v dx _u dy v
e gV dz w dz w dx u
dy dz dx

= — = — whose solution gives y
v w u

Note for v= 0 no unique direction = stagnation point

Potential flow: y = P

constant on surface solid Surfoce containsstreamiines
body but slip velocity C .

Viscous flow: no slip © Sk e &

Condition implies /S"’QNUOHDOIM

stagnation surface CeEF=>>

However, can defing  cosssemionineone
surface streamlines

or

P
<

Stagnation streamline

Figure 12.1 Streamline patterns with stagnation points
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V-Vl]y=0 = uy + v, + w, = 0], Assume flat wall but
also valid curved
Vyly=p =0 surface

Taylor series y direction
u=0+uy,y+--

y2
v=0+0+vy02 +

w=0+w,y+--
dx Yo y-0u Uy
where 8 =angle Y, with x-axis in the plane of the wall since the

. - - v
streamline angles in the y-x and y-z planes, i.e., - =
y=0

z = 0, are both zero.

p = constant V- u = 0 and y cannot end in fluid, i.e. end/return
oo or closed loop or can emanate from surface stagnation point

Stream tube: [V -udV = 0 =fg-QdAzfAlg-QdA+fAzg-QdA

Qin :9 Qout



Figure 12.2 Streamtube at an instant in time.

Next consider w componentsony =0

Wy, = Vy — Uy =
Since w, =0,w lies in wall

dz B & —Uy, dz

— — ==-1/

dx w lines Wy Wy,

Ty

Vortex lines are perpendicular to v on y=0 but not
necessarily for y # 0 i.e. in fluid volume.

Since V- w = 0, w cannot end in the fluid with same
conclusions reached for .
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Ann. Rev. Fluid Mech. 1982 14:61-85

TOPOLOGY OF THREE-

DIMENSIONAL SEPARATED

FLOWS!

Murray Tobak and David J. Peake

Singular Points

Singular points in the pattern of skin-friction lines occur at isolated points
: on the surface where the skin friction (7, 7.,) in Equation (3), or alter-

natively the surface vorticity (w,, w,) in Equation (4), becomes identically

zero. Singular points are classifiable into two main types: nodes and saddle

points. Nodes may be further subdivided into two subclasses: nodal points

and foci (of attachment or separation).

B -

w \// Z
u Figure 1 Singular points: (a) node; (b) focus; (c) saddle (Lighthill 1963).
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2) Relationship w and t,,

y=0 u,=0,v,=0andw, =0

Consider a 1-D flow near a wall

or x-axis along Y|4 = ¢
such that w =0 and
Wyo - O

The viscous force per unit area (stress) is

given by:

_ _ _u
fi = anij' where Tij = ugij = E (ui’j + uj,i)

T11Nq + TNy + Ty3ng = 1
TNy + TooNp + T3z =,
T31My + T3Ny + T33ng =,

. . ou ov . ou
Tip = UEp = U 5"‘& = K3,
v
T22=H522=2H5=0

ow av) —~0

T3y = UE3p = H(E‘Fa_z
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Which shows that

More generally, for any coordinate system

j_r"iscous — fl = Nt = —Un Xgl fx = THWz = HUy,
fz = Hwy = KWy,

= Wyl + w, ]+ wk
—w,k + w,i

The wall shear stress and vorticity are directly related.

Once vorticity is generated, its subsequent behavior is
governed by the vorticity equation.

1 See Appendix A
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3) Vorticity flux at a solid wall

In analogy with heat flux, the vorticity flux vector is

dw; ]
6; = —Ny axl flux of w across plane with normal n
j 12 n
oc=-n-Vw =]
- - 5. = _ Owy _6wy _ 0wy
x oy 'Y ay’ % oay

o, and o, can be related to p, and p, by evaluating the
momentum equation on y=0

p—+ V(V V) wa]——Vp HV X w neglectg

y=0 Vp = —uV X w Since V(0) =0

_ 5 s a_ a_ 9. X . -
Pressure g_radlent along W L2 = g, (ﬂl + 3y + gk) X (wyl + w,f + w,k)
surface drlves_ _ Ox oy dw, . o, anE b, Owy. Owy.
o, and o, vorticity flux ap " ax " ax ) " oy + 3y + =750
into the fluid. 2z M5, = THOx dw, duy dw, OJwy),
Pressure gradient o _ (a& 3 &) ( Az ) ( 0z ox )J
perpendicular surface ay 0z ox N % dwy 7
related w(0)gradients o, = _Owy _ 9wx | x 0y

) dy O0x _ . _

along wall and flux into o, ony =0, since wy =0
fluid using V-o =0 0z

w, =0 but flux w, out of wall depends on w, and
w, gradients along the wall
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The vorticity transport equation does not explicitly
include pressure:

Dw
— =w- -V +wW?w
Dt — — —
Leading to idea pressure does not influence w, which

would be more accurately stated as not directly influence;
since, Vp related vorticity flux from wall.
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IN WAVE/BOUNDARY-LAYER AND WAKE INTERACTION
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Vorticity can either be distributed as in a shear flow or concentrated as in

elemental vortices (i.e., vortex rings and pairs and a wing-tip vortex). Vortex/free-surface

interaction refers to investigations of interactions of elemental vortices with a free
~ surface. The interactions are primarily controlled by Re, Fr, Weber number We (=
pUZLfl‘, where L is the vortex-ring radius R or the spacing of the vortex pair D, and T is
surface tension), and contamination number W (= El:‘li’ where AT is the difference in
surface tension between a clean and contaminated s:l:rface and T is the circulation of the
vortex ring or pair) values. Complex interactions occur involving interrelated free-
surface deformation, secondary-vorticity generation, and vorticity
disconnection/reconnection. The free-surface deformations include gravity and capillary

~—  waves and scars, striation, and whirls. Secondary-vorticity generation is related both to

. the free-surface deformation and the vortex disconnection/reconnection process, ie.,
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segments of vorticity lines move toward and merge with the free surface leaving the open
ends of the remaining vortex lines terminating at the free surface.

First, some basic aspects of vorticity production, flux, and transport will be
discussed (e.g., Panton, 1984). Vorticity can not be generated (or destroyed) in the
interior of a homogeneous fluid under normal conditions since by vector identity V - @ =
0, which implies that there can be no sources or sinks of vorticity within the fluid.
However, vorticity can be generated (i.e., produced/fluxed) at boundaries.
Production/flux refers to specified values and gradients of vorticity, respectively, at the
boundary. Vorticity is produced at a solid-wall boundary due to the no-slip condition

where the wall vorticity is related to the wall-shear stress by

n-z‘w=-—£—enxm (3.4)

In analogy to heat flux, the vorticity flux q is defined as
N
gi=-nj % (3.5)

where qj means the flux of i vorticity across a boundary with normal nj. Positive and
negative values of gj correspond to vorticity sinks and sources, respectively. (3.5) can be
equivilently expressed through vector idetity (Rood, 1993a,b) by
q=-n-Vo (3.6)
=nxVxo-Vo)'n
The terms on the right-hand side of (3.6) cart be fursher expanded through the use of the
NS equation [i.e., (4.2) for laminar flow] and vector identity, respectively, to read

nxVxo=nx[-Re(a+Vp) 3.7
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(Vo)-n=V(®-n)-o-Vn (3.8)

| wherea= oU; + Y Uj §H-1- is the fluid acceleration and Vp is the piezometric pressure
ot ) od

gradient. (3.7) is a vector tangent t0 the free surface with magnitude proportional to the
sum of the fluid acceleration and piezometric pressure gradient. (3.8) is the sum of the
gradient of the normal component of vorticity and dot product of ® and Vn, which is
related to the surface curvature. Thus, the physical mechanism for q is a combination of
acceleration, piezometric pressure gradient, gradient of normal component of vorticity,
and dot product of @ and Vn. Vorticity flux at solid-wall boundaries due to pressure
gradients and acceleration were discussed by Lighthill (1963) and Morton (1984),
respectively. Vorticity flux at a free surface has been discussed by Batchelor (1967),
Lugt (1987), and Rood (1993a,b). Once generated, vorticity is governed by the vorticity-

transport equation

20 (@ VIV+g V20 3.8)
Il))—(:) represents the temporal and convective rate of change of . (w- V)V represents the
change in magnitude and redistribution from one component to another of @ by stretching
and turning, respectively. % V2 represents the net rate of viscous diffusion of @. For
two-dimensional flow, (@« V)V is zero. Fbr three-dimensional flow, complex
interactions occur due to stretching and turning. Note that (3.8) does not contain either

pressure or VOrticity generation terms.
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Once vorticity Is generated, its subsequent behavior is
governed by the vorticity equation.

0

<

N-S +V-VV =-V(p/p) +vV?V Neglect f

Q

t

ov 1
or  Z4V(SV-V)-Vxw=-V(p/p)+ VI3V

The vorticity equation is obtained by taking the curl of
this equation. (Note VV x (VV8) = 0).

ow
E—Vx(ljxw)—vvz

=VV-ow)—-oWV- V)=V -Nw+(w- V)V

Therefore, the transport Eqg. for o Is:

Q
a T V)a)—(a) V)V +vVw

Do Rate of Rate of viscous diffusion of @
Dt deforming
Rate of change of vortex lines

a—+ ua+va+waz

0 0 0 v+ o720
a)xax+a)yay+a)262 +v

aw(a 0 0)
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dw dw dw dw
St U— FV—— W ——

ot dx dy 0z
ou du du 2
— wxa +a)y@+a)zg+vv W,y
Stretching h turﬁing ”
dw dw dw Jw
y y -y Y
FTe +u I + v 3y +w 37

ov ov ov 5
= —+wy@+wzg+v|7 Wy,

dw, dw, dw, dw,

Note:
(1) Equation does not involve p explicitly

(2) For 2-D flow (w - V)V = 0 since w Is perpendicular
to V and there is no deformation of w, i.e.,

Dw
D = vWew
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To determine the pressure field, the divergence of the N-S

equation is taken.
aui

ox;

aul+ ou;\ ap+ d%u;
P\at " Yox) ™ "ox " Hax?

V- (NS):
o[y o= -v(2) + ]
oV
V-(—_—VVZV)+V (Vv-vy) = -Vv? (p)
dt p
(i—vvz)v-v+v-(v-vv)=—v2(p)
ot — - = p
vovy =y 2
. = U:
0 aui ujaul d o0 i
v-(v VK)_G_xi< fﬁ) PR e m
du; du
. _ %%
V(W) =5
0 1 du; du
=) = - -
(at Y — p dx; dx;
V=0 72y = 3%
ForV-V =0: Vp = Pox; om:

Poisson equation determines pressure up to additive
constant. In the end, i not in equation; however, RHS is

f(w).
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Alternative derivation vorticity transport equation

V-w=v(Zr-v)-Vxe

VI =V(V-V)-Vx(VXV)=-VXxw

a—%+VK—KxQ=—%Vp—viQ

a—K—V><a)+v(1(+é)=—1/V><a) Stokes form NS
it — = p —

N -

Bernoulli equation for steady inviscid irrotational flow

Vx (Vxw)=V(0)+w- VW -w(l¥)-V- Vo
=w-VV -V -Vw

VX (Vxw)=Y(L@) -V w

)
99 LY . Vo=w-VV+ VW2 =22
ot — = = = — Dt
viscous diffusion
0w — Dw

ZLV Vo =w- VV + V2w === Trate of change following
oo — — —__= — Dt fluid particle

Vortex stretching / turning
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The relative motion between two neighboring fluid

particles.
B
/ *

A (uv,w) =V
@B: V. +dV =V +VV.dr 1%order Taylor Series

dx?
Up =ua+uxdx+uydy+uzdz+uxx7+

dx?
Vp =va+vxdx+vydy+vzdz+vxx7+

2
Wy =W, +w,dx +w dy+wzdz+wxxdi+
Y 2

dV = (Us-Ua, VB-Va, WB-Wp)

Uy Uy Uz)[dx
av="VVy. dr= [vx Vy Vz[ldy| = e;;dx;
Wx Wy Wzlldz
I deformation rate
tensor = ej

relative motion j

av = dv; = (dV,,dV,, dVs)
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Vortex Stretching & Turning

Consider two neighboring fluid particles

Y (©)
r(®) r=i-4
X(t) 7= R’ where R = |r]|
d
2 = u(x,t) X(t) = X(0) + f, u dt

X(At) = X(0) + u(X(0),0)At At small
Y(At) = Y(0) + u(Y(0),0)At

r(At) = Y (At) — X(At) = Y (0) — X(0) + [u(¥(0),0) — u(X(0),0)] At
r(0) )

As per derivation dV = VV - dr

Y(0) = X(0 0

T LR e orc

na0) = 2(0) + Vi - 2(0) At r(Af) = #(A) R(Ar)
r(0) = #(0) R(0)

7(At) R(AE) = £(0) R(0) + Vu - £(0) R(0) At
=~ (R(AY) AY)
And —7(0)/ At

£(At) —£(0) _ —£(0) [R(AD) — R(0)] . R(0)

= + Vu - 7(0
At R(0) At R ¢ O
lim —+arf=Vu-7
At—0 dt -
Q= %% = fractional rate of change of line element r
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Let7 = w/ | w |, unit vector in direction vorticity

d [ w
Vu - a)—aa)+|a)| <|_|>
w

w
vortex stretching & (1) 2)
turning term in vorticity
transport equation or

contraction
(1) stretching in direction w due %%, which strengthens
or weakens w

(2) using

Shows (2) is a vector perpendicular w, therefore I
represents turning of w into two orthogonal directions

This analysis shows how Vu - w term can stretch and turn

vorticity as it evolves in time and can transfer energy
between smaller scales via the Richardson energy

cascade.
Uy Uy U [Wy
VE . Q = | Uy vy v, (,()y
Wx

wy, Wl |w,
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w(At)

Figure 18.1. Shearing of w; in a velocity field v(x) to create
@, vorticity.
w(0)

ol

Neglecting vV w

Dw1 Dw Dw

3
= wiu = WV, —m— = wWw
Dt 1%x 1¥%x Dt 1YWx

using previous analysis:

wiuU, = axw a=—
1%x 1 a
creation w and w due tov and
2 3 X

w, Fig illustrates production

E |l
N——
~>

d
W1V, = 0)1E<

ww, = w; & (g)j w,from w, where v, is component
g dt \|o| of d(w/|w|)/dt projected onto y
direction

In the general case, arbitrarily oriented vorticity filaments are
simultaneously stretched or compressed and reoriented by the
shearing motions. The propensity for vorticity to stretch and reorient
is the main driving force behind the appearance and maintenance of
turbulence in flowing fluids. In essence, this physical process is how
energy is transferred to small scales, where the action of viscous
forces in smoothing the flow and dissipating energy become
important. A discussion of these and other aspects of turbulent flow
may be found in several books (e.g., Bernard & Wallace 2002; Pope
2000).
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Vortex stretching and reorientation: fundamental importance
energy cascade

Cartesian coordinates: o
Q-Vu a
= (Qu, + Qu, + Qu,)i
SM% turﬂing
+ (v + Qv + Q,v,)f
+ (wax + Q,w, + QZWZ)]E
Q; =component
Subscript V= derivative FIGURE 5.11

Natural coordinate system aligned with the vorticity vector.

Curvilinear coordinate tangent Q: &; = Q/|Q|

_q ( d N d N a)

= \Tos e”an emam 4
whereQ-&, =Q-¢, =0andQ-& =Q = |Q]

u ; ]
Q 5. = Q) X derivative

-V

|<

u direction )
_| q Ju 0 v N ow
B 05 ds’ ds

stretchmg turning about n & m axes

e w-w=w;+ o)+ =
EZQ'VE’ neglect v |Q| S

o _ = ou & = w/|w|

Dt~ o0s w- & =w/No=Vo

Dts = () a—: important turbulent flow

Dw":Q% Dwm:QGum

Dt ds Dt ds
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Stream Function Vorticity Approach (restricted 2D)
Uu=1v,, v=-Yy, W;=Vx—U,= W
Yux + Py, = —w Poisson equation

we + uw, + vw, = vWw
Wi + Py — Prw, = v(wxx + a)yy) parabolic t

elliptic (X, y)
two equations two unknowns w and y

VZp = 2p(uyv — uy vy )
= Zp(_lpyx)(lpxy + l/)yylpxx)
= Zp(l/)xxl/)yy - 1/)9%3/)

Vs primitive variable approach

V-V =20
DV
- 2
Dt V(p/pa) +(;/V v
u; 0x
Vi(p/p) = ————
axj 6uj

In both cases need appropriate initial and boundary
conditions
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3-46 Derive the two-dimensional Poisson relation for pressure, Eg. (3-256).

Vv p
V-[—_+V-VV=—V<—>+VV2V]

ae T VL P z
v (5)=-v-(x-vy) i+ vf
8
0y

QJ|Q_, I<
~>

V=
V- [(uux + vuy)i + (uvx + vvy)j]

d d
= % (uux + vuy) + @ (uvx + vvy)

1 2 3 4 5 6 7 8
= U2 + Ullzy + VU, + Vlgy + U, Uy + ulg + V) + vl

2+6=uy(ux+vy)=0
4+48=v(uy+1,)=0
3=5=2u,v,

1+7=—-uwy, —vyu, = —2u,v,

VZp = Z(uxvy _ uyvx) = V2p See Appendix B

To do this, write the x- and y-momentum (Navier—Stokes) equations in the forms

ap_ ap_ )
FARRRC)) By (2)

Take d/ 0x(Eq. 1) and add it to 9/ dy(Eq. 2) to give V?p. The gravity term vanishes
(assuming that gis constant) and the viscous terms (assuming constant y) vanish by
virtue of the continuity equation. What remains is a string of 8 acceleration-related terms:
Vip = — (a_u> + 0%u avau az_u+a_ua_v+ 62—U+<0_U) + i
p==p “ax? Taxay Voxay Tayox  “axay \ay) T Va2
1 2 3 4 5 6 7 8
Now combine as follows: Terms 2 and 6, when (u @/ dx) is factored out, vanish due to
continuity; likewise for terms 4 and 8 when (v 9/ dy) is factored out. Replace one
(0u/ 0x) in term 1 by(— dv/ dy), and replace one (dv/ dy) interm 7 by (— du/ dx),
thus making terms 1 and 7 equal. Terms 3 and 5 are already equal. The final result is Eq.
(3-256):
du dv du dv

2., — -
Vip=2p (6x dy 09y 6x) (Answer)
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3. Kinematic Decomposition of flow fields

Previously, we discussed the decomposition of fluid
motion into translation, rotation, and deformation. This
was done locally for a fluid element. Now we shall see
that a global decomposition is possible.

Helmholtz’s Decomposition: any continuous and finite
vector field can be expressed as the sum of the gradient of
a scalar function ¢ plus the curl of a zero-divergence
vector A. The vector A vanishes identically if the original
vector field is irrotational.

V=V +V?

Where: w =V x V% The irrotational part of

~N i the velocity field can be

0=VX qu expressed as the gradient

of a scalar.
9 K(p = VQO

If V-V=V-Vo+V-V?=0
Then V2?9 =0 The GDE for ¢ is the Laplace Eq.

And V®=VxA Since V-(VxA)=0
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VXV =w=VXV XA
_|72A + (V- A) Adgain, by vector identity

i.e. \72A = —w
The solution of this equation is A = _IW dv
Thus Ve =—-—] T:l“’

Which is known as the Biot—Savart law.

The Biot-Savart law can be used to compute the velocity
field induced by a known vorticity field. It has many
useful applications, including in ideal flow theory (e.g.,
when applied to line vortices and vortex sheets it forms
the basis of computing the velocity field in vortex-lattice
and vortex-sheet lifting-surface methods).

The important conclusion from the Helmholtz
decomposition is that any incompressible flow can be
thought of as the vector sum of rotational and irrotational
components. Thus, a solution for irrotational part v’
represents at least part of an exact solution. Under certain
conditions, high Re flow about slender bodies with
attached thin boundary layer and wake, V* is small over
much of the flow field such that V¥ is a good
approximation toV . This is probably the strongest

justification for ideal-flow theory: incompressible,
Inviscid, and irrotational flow.
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