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Chapters 1 Preliminary Concepts & 2 Fundamental 

Equations of Compressible Viscous Flow 
 

(5) Vorticity Theorems 
 

The incompressible flow momentum equations focus attention 

on V and p and explain the flow pattern in terms of inertia, 

pressure, gravity, and viscous forces.  Alternatively, one can 

focus attention on ω and explain the flow pattern in terms of the 

rate of change, deforming, and diffusion of ω by way of the 

vorticity equation.  As will be shown, the existence of ω 

generally indicates that viscous effects are important since fluid 

particles can only be set into rotation by viscous forces.  Thus, 

the importance of this topic (for potential flow) is to demonstrate 

that under most circumstances, an inviscid flow can also be 

considered irrotational.   

 

1. Vorticity Kinematics 

 

𝜔 = 𝛻 × 𝑉 = (𝑤𝑦 − 𝑣𝑧)𝑖̂ + (𝑢𝑧 −𝑤𝑥)𝑗̂ + (𝑣𝑥 − 𝑢𝑦)𝑘̂ 

 

𝜔𝑖 = 𝜀𝑖𝑗𝑘
𝜕𝑢𝑘

𝜕𝑥𝑗
= 𝜀𝑖𝑗𝑘

1

2
(
𝜕𝑢𝑘

𝜕𝑥𝑗
−
𝜕𝑢𝑗

𝜕𝑥𝑘
) = 2  the angular 

velocity of the fluid element (i, j, k cyclic) 
 

 

𝜀123 = 𝜀231 = 𝜀312 = 1
𝜀321=𝜀213 = 𝜀132 = −1
𝜀𝑖𝑗𝑘 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⏟              

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 𝑡𝑒𝑛𝑠𝑜𝑟
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A quantity intimately tied with vorticity is the circulation: 

 

  

𝛤 = ∮𝑉 ⋅ 𝑑𝑥  

 

 

Stokes Theorem: 

 

 ∮𝑎 ⋅ 𝑑𝑥 = ∫ 𝛻 × 𝑎 ⋅ 𝑑𝐴
𝐴

 

 

 ∴  𝛤 = ∮𝑉 ⋅ 𝑑𝑥 = ∫ 𝛻 × 𝑉 ⋅ 𝑑𝐴 =
𝐴

∫ 𝜔 ⋅ 𝑛𝑑𝐴
𝐴

 

 

Which shows that if ω =0, i.e., if the flow is irrotational, 

then Γ = 0 also. 

 

Vortex line = lines which are everywhere tangent to the 

vorticity vector. 

 

 
Next, we shall see that vorticity and vortex lines must 

obey certain properties known as the Helmholtz vorticity 

theorems, which have great physical significance.   
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The first is the result of its very definition: 

 

𝜔 = 𝛻 × 𝑉 

 
𝛻 ⋅ 𝜔 = 𝛻 ⋅ (𝛻 × 𝑉) = 0 

 

i.e., the vorticity is divergence-free, which means that 

there can be no sources or sinks of vorticity within the 

fluid itself. 

 

Helmholtz Theorem #1:  a vortex line cannot end in the 

fluid.  It must form a closed path (smoke ring), end at a 

boundary, solid or free surface, or go to infinity. 

          

   
 

 

The second follows from the first and using the 

divergence theorem: 

 

∫𝛻 ⋅ 𝜔𝑑∀
∀

= ∫𝜔 ⋅ 𝑛𝑑𝐴
𝐴

= 0 

 

 

 

 

Vector identity 

Propeller vortex is known 

to drift up towards the free 

surface. 



4 

 

Application to a vortex tube results in the following. 

 

∫ 𝜔 ⋅ 𝑛𝑑𝐴
𝐴1⏟      

−𝛤1

+∫ 𝜔 ⋅ 𝑛𝑑𝐴
𝐴2⏟      

𝛤2

= 0 

                                

        Or  Γ1= Γ2 

 

Helmholtz Theorem #2: 

 

The circulation around a given vortex line (i.e., the 

strength of the vortex tube) is constant along its length. 

 

This result can be put in the form of a simple one-

dimensional incompressible continuity equation.  Define 

ω1 and ω2 as the average vorticity across A1 and A2, 

respectively. 

ω1A1 = ω2A2 

 

which relates the vorticity strength to the cross-sectional 

area changes of the tube. 

 

 

 

 

 

 

 

Minus sign due 

to outward 

normal 
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2.  Vortex dynamics 

 

Consider the substantial derivative of the circulation 

assuming incompressible flow and conservative body 

forces. 

 
𝐷𝛤

𝐷𝑡
=
𝐷

𝐷𝑡
∮𝑉 ⋅ 𝑑𝑥   = ∮

𝐷𝑉

𝐷𝑡
⋅ 𝑑𝑥 + ∮𝑉 ⋅

𝐷

𝐷𝑡
𝑑𝑥 

 

 
From the N-S equations we have 

 
𝐷𝑉

𝐷𝑡
=
1

𝜌
𝑓 −

𝛻𝑝

𝜌
+ 𝜈𝛻2𝑉 

    = −𝛻 (Φ +
𝑝

𝜌
) + 𝜈𝛻2𝑉 

 

Also, 
𝐷

𝐷𝑡
𝑑𝑥 = 𝑑

𝐷𝑥

𝐷𝑡
= 𝑑𝑉 

 

Define 𝑓 = −𝛻Φ for 

the gravitational body 

force =ρgz. 
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𝐷𝛤

𝐷𝑡
= ∮[−𝛻(Φ + 𝑝/𝜌)] ⋅ 𝑑𝑥
⏟              

−∮𝑑Φ−∮
𝑑𝑝
𝜌

+∮[𝜈𝛻2𝑉] ⋅ 𝑑𝑥 + ∮𝑉 ⋅ 𝑑𝑉
⏟      
1
2∮
𝑑(𝑉⋅𝑉)

 

   = ∮ [−𝑑Φ−
𝑑𝑝

𝜌
+
1

2
𝑑𝑉2]

⏟              
+ 𝜈 ∮𝛻2𝑉 ⋅ 𝑑𝑥 

𝐷𝛤

𝐷𝑡
= 𝜈∮𝛻2𝑉 ⋅ 𝑑𝑥 = −𝜈∮𝛻 × 𝜔 ⋅ 𝑑𝑥 

𝐷𝛤

𝐷𝑡
= ∮[𝜈𝛻2𝑉] ⋅ 𝑑𝑥 =  −𝜈 ∮𝛻 × 𝜔 ⋅ 𝑑𝑥 

 

𝛻 × (𝛻 × 𝑉)⏟    
𝜔

= 𝛻(𝛻 ⋅ 𝑉)⏟    
=0

− 𝛻2𝑉 

Implication:  The circulation around a material loop of 

particles changes only if the net viscous force on those 

particles gives a nonzero integral. 

 

 

 

 

 

 

 

 

=0 since integration is around a closed 

contour and , p, & V are single valued 
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If 𝜈 = 0  or 𝜔 = 0  (i.e., inviscid or irrotational flow, 

respectively) then  

 
𝐷𝛤

𝐷𝑡
= 0 

 

Kelvins Circulation Theorem:  for an ideal fluid (i.e., 

inviscid, incompressible, and irrotational) acted upon by 

conservative body forces (e.g., gravity) the circulation is 

constant about any closed material contour moving with 

the fluid, which leads to: 

 

Helmholtz Theorem #3:  No fluid particle can have 

rotation if it did not originally rotate.  Or, equivalently, in 

the absence of rotational forces, a fluid that is initially 

irrotational remains irrotational.  In general, we can 

conclude that vortices are preserved as time passes.  Only 

through the action of viscosity can they decay or 

disappear.   

 

Kelvins Circulation Theorem and Helmholtz Theorem #3 

are very important in the study of inviscid flow.  The 

important conclusion is reached that a fluid that is initially 

irrotational remains irrotational, which is the justification 

for ideal-flow theory. 

 

 

 

The circulation of a 

material loop never 

changes. 
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Production of Vorticity at Walls:  A solid wall produces 

vorticity that emanates into the fluid due to the no slip 

condition/shear stress 
 

1) Limiting ψ and ω lines on a solid wall 

 
 

𝑢 × 𝑑𝑠 = 0 ⇒ (𝑣 𝑑𝑧 − 𝑤 𝑑𝑦)𝑖̂ + (𝑤 𝑑𝑥 − 𝑢 𝑑𝑧)𝑗̂ + (𝑢 𝑑𝑦 − 𝑣 𝑑𝑥)𝑘̂ 

i.e. along ψ  
𝑑𝑦

𝑑𝑧
=
𝑣

𝑤
   

𝑑𝑥

𝑑𝑧
=
𝑢

𝑤
   

𝑑𝑦

𝑑𝑥
=
𝑣

𝑢
 

or    
𝑑𝑦

𝑣
=
𝑑𝑧

𝑤
=
𝑑𝑥

𝑢
  whose solution gives ψ 

Note for 𝑢= 0 no unique direction = stagnation point 

 

Potential flow: ψ = 

constant on surface solid 

body but slip velocity 

 

Viscous flow: no slip 

condition implies 

stagnation surface 

However, can define 

surface streamlines 
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𝛻 · 𝑉|𝑦=0 ⇒ 𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0|𝑦=0 
 

𝑣𝑦|𝑦=0 = 0 
 

Taylor series y direction 

𝑢 = 0 + 𝑢𝑦0𝑦 +⋯  

𝑣 = 0 + 0 + 𝑣𝑦𝑦0
𝑦2

2
+⋯  

𝑤 = 0 + 𝑤𝑦0𝑦 +⋯  

 
𝑑𝑧

𝑑𝑥
|
𝜓0
= tan 𝜃 = lim

𝑦→0

𝑤

𝑢
=
𝑤𝑦0

𝑢𝑦0
  

where 𝜃 =angle 𝜓0with 𝑥-axis in the plane of the wall since the 

streamline angles in the y-x and y-z planes, i.e., 
𝑣

𝑢
|
𝑦=0

=

𝑣

𝑤
|
𝑦=0

= 0 , are both zero. 

 

𝜌 = constant ∇ ⋅ 𝑢
‾
= 0 and 𝜓 cannot end in fluid, i.e. end/return 

∞ or closed loop or can emanate from surface stagnation point 

 
Stream tube:∫∇ ⋅ 𝑢 𝑑∀ = 0 = ∫𝑢 ⋅ 𝑛 𝑑𝐴 = ∫ 𝑢

𝐴1
⋅ 𝑛 𝑑𝐴 + ∫ 𝑢

𝐴2
⋅ 𝑛 𝑑𝐴  

 

Qin = Qout 

Assume flat wall but 

also valid curved 

surface 

L’Hôpital rule 
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Next consider 𝜔 components on y = 0 

 
𝜔𝑥 = 𝑤𝑦 − 𝑣𝑧 = 𝑤𝑦0
𝜔𝑦 = 𝑢𝑧 − 𝑤𝑥 = 0
𝜔𝑧 = 𝑣𝑥 − 𝑢𝑦 = −𝑢𝑦0

} 𝑦=0 

 

 

 
𝑑𝑧

𝑑𝑥
|
𝜔 lines

=
𝜔𝑧
𝜔𝑥
 =  
−𝑢𝑦0
𝜔𝑦0

 = = −1/
𝑑𝑧

𝑑𝑥
|
𝜓

 

 

Vortex lines are perpendicular to 𝜓  on y=0 but not 

necessarily for 𝑦 ≠ 0 i.e. in fluid volume. 

 

Since ∇ ⋅ 𝜔 =  0,  𝜔  cannot end in the fluid with same 

conclusions reached for 𝜓. 

Since 𝜔𝑦 = 0,𝜔 lies in wall 
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13 

 

2) Relationship ω 𝑎𝑛𝑑 τ𝑤 

 

𝑦 = 0 𝑢𝑥 = 0, 𝑣𝑦 = 0 and 𝑤𝑧 = 0  

 

 
 

The viscous force per unit area (stress) is 

given by: 

 
𝑓𝑖 = 𝑛𝑗τ𝑖𝑗 ,  where τ𝑖𝑗 = μ𝜀𝑖𝑗 =

𝜇

2
 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

 

τ11𝑛1 + τ12𝑛2 + τ13𝑛3 = f𝑥  

τ21𝑛1 + τ22𝑛2 + τ23𝑛3 = f𝑦  

τ31𝑛1 + τ32𝑛2 + τ33𝑛3 = f𝑧  
 

τ12 = με12 = μ(
∂𝑢

∂𝑦
+
∂𝑣

∂𝑥
) = μ

∂𝑢

∂𝑦
   

τ22 = μ𝜀22 = 2μ
∂𝑣

∂𝑦
= 0  

τ32 = μ𝜀32 = μ(
∂𝑤

∂𝑦
+
∂𝑣

∂𝑧
) = 0  

or x-axis along 𝜓|𝜃 = 0 
such that 𝑤 = 0 and 

𝑤𝑦0  =  0 
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Which shows that 

f𝑥 = μ
∂𝑢

∂𝑦
,  f𝑦 = f𝑧 = 0 

However, from the definition vorticity we also see that  

f𝑥 = μ
∂𝑢

∂𝑦
= −μω𝑧 

 

More generally, for any coordinate system 

 

𝑓viscous = 𝑓𝑖 = 𝑛𝑗τ𝑖𝑗 = −μ 𝑛 × ω1 

 

ω = ω𝑥 ı̂ + ω𝑦ȷ̂ + ω𝑧𝑘̂  

𝑛 × 𝜔 = −𝜔𝑥𝑘̂ + 𝜔𝑧𝑖̂  

𝑛 = 𝑛2ȷ ̂ 
 

The wall shear stress and vorticity are directly related. 

 

Once vorticity is generated, its subsequent behavior is 

governed by the vorticity equation. 

 

1 See Appendix A 

𝑓𝑥 = −𝜇𝜔𝑧 = 𝜇𝑢𝑦0 

𝑓𝑧 = 𝜇𝜔𝑥 = 𝜇𝑤𝑦0 
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3) Vorticity flux at a solid wall 

 

In analogy with heat flux, the vorticity flux vector is 

σ𝑖 = −𝑛𝑗
∂ω𝑖

∂𝑥𝑗
  

σ = −𝑛 ⋅ ∇ω  

 

 

σ𝑥 𝑎𝑛𝑑 σ𝑧 can be related to 𝑝𝑥 𝑎𝑛𝑑 𝑝𝑧 by evaluating the 

momentum equation on y=0 

 

ρ [
∂𝑉

∂𝑡
+
1

2
∇(𝑉 ⋅ 𝑉) − 𝑉 × ω] = −∇𝑝 − μ∇ × ω     neglect 𝑔 

 

y=0    ∇𝑝 = −μ∇ × ω   Since 𝑉(0) = 0 

 
∂𝑝

∂𝑥
= −μ

∂ω𝑧

∂𝑦
= μσ𝑧 

  
𝜕𝑝

𝜕𝑧
= 𝜇

𝜕𝜔𝑥

𝜕𝑦
= −𝜇𝜎𝑥  

∂𝑝

∂𝑦
= −μ(

∂ω𝑥

∂𝑧
−
∂ω𝑧

∂𝑥
)  

σ𝑦 = −
∂ω𝑦

∂𝑦
=
∂ω𝑥

∂𝑥
+

∂ω𝑧

∂𝑧
  

 

𝜔𝑦 = 0  but flux 𝜔𝑦  out of wall depends on 𝜔𝑥 and 

𝜔𝑧 gradients along the wall 

 

  

flux of ω across plane with normal 𝑛 

= 𝑗 ̂ 

𝜎𝑥 = −
𝜕𝜔𝑥

𝜕𝑦
, 𝜎𝑦 = −

𝜕𝜔𝑦

𝜕𝑦
, 𝜎𝑧 = −

𝜕𝜔𝑧

𝜕𝑦
 

Pressure gradient along 

surface drives 

𝜎𝑧 and 𝜎𝑥 vorticity flux 

into the fluid. 

Pressure gradient 

perpendicular surface 

related 𝜔
‾
(0)gradients 

along wall and flux into 

fluid using ∇·ω = 0 

(
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) × (𝜔𝑥𝑖̂ + 𝜔𝑦𝑗̂ + 𝜔𝑧𝑘̂) 

∂ω𝑦

∂𝑥
𝑘̂ −

∂ω𝑧
∂𝑥
ȷ̂ −
∂ω𝑥
∂𝑦
𝑘̂ +

∂ω𝑧
∂𝑦
ı̂ +
∂ω𝑥
∂𝑧
ȷ̂ −
∂ω𝑦

∂𝑧
ı̂ 

(
𝜕𝜔𝑧
𝜕𝑦
−
𝜕𝜔𝑥
𝜕𝑧
) 𝑖̂ + (

𝜕𝜔𝑥
𝜕𝑧
−
𝜕𝜔𝑧
𝜕𝑥
) 𝑗̂

+ (
𝜕𝜔𝑦

𝜕𝑥
−
𝜕𝜔𝑥
𝜕𝑦
) 𝑘̂  

on 𝑦 = 0,  since 𝜔𝑦 = 0 

 



16 

 

 
 

The vorticity transport equation does not explicitly 

include pressure: 

 
𝐷ω

𝐷𝑡
= ω ⋅ ∇𝑉 + ν∇2𝜔 

 

Leading to idea pressure does not influenceω , which 

would be more accurately stated as not directly influence; 

since, ∇p related vorticity flux from wall. 
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Once vorticity is generated, its subsequent behavior is 

governed by the vorticity equation. 

 

N-S  
𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ 𝛻𝑉 = −𝛻(𝑝/𝜌) + 𝜈𝛻2𝑉    

 

Or  
𝜕𝑉

𝜕𝑡
+ 𝛻 (

1

2
𝑉 ⋅ 𝑉) − 𝑉 × 𝜔 = −𝛻(𝑝/𝜌) + 𝜈𝛻2𝑉 

 

The vorticity equation is obtained by taking the curl of 

this equation.  (Note 𝛻 × (𝛻𝜃) = 0). 

 
𝜕𝜔

𝜕𝑡
− 𝛻 × (𝑉 × 𝜔)⏟        = 𝜈𝛻

2𝜔 

 

   = 𝑉(𝛻 ⋅ 𝜔) − 𝜔(𝛻 ⋅ 𝑉) − (𝑉 ⋅ 𝛻)𝜔 + (𝜔 ⋅ 𝛻)𝑉 

 

   Therefore, the transport Eq. for ω is: 

 

  
𝜕𝜔

𝜕𝑡
+ (𝑉 ⋅ 𝛻)𝜔⏟        

𝐷𝜔

𝐷𝑡

= (𝜔 ⋅ 𝛻)𝑉 + 𝜈𝛻2𝜔   

 

 

𝜕𝜔

𝜕𝑡
+ (𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
)𝜔

= (𝜔𝑥
𝜕

𝜕𝑥
+ 𝜔𝑦

𝜕

𝜕𝑦
+ 𝜔𝑧

𝜕

𝜕𝑧
)𝑉 + 𝜈𝛻2𝜔 

 

Rate of viscous diffusion of ω 

Rate of change of ω    

Rate of 

deforming 

vortex lines 

Neglect 𝑓 
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𝜕𝜔𝑥
𝜕𝑡
+ 𝑢

𝜕𝜔𝑥
𝜕𝑥
+ 𝑣

𝜕𝜔𝑥
𝜕𝑦
+ 𝑤

𝜕𝜔𝑥
𝜕𝑧

= 𝜔𝑥
𝜕𝑢

𝜕𝑥⏟  
𝑆𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔

+ 𝜔𝑦
𝜕𝑢

𝜕𝑦
+ 𝜔𝑧

𝜕𝑢

𝜕𝑧⏟        
𝑡𝑢𝑟𝑛𝑖𝑛𝑔

+ 𝜈𝛻2𝜔𝑥 

𝜕𝜔𝑦

𝜕𝑡
+ 𝑢

𝜕𝜔𝑦

𝜕𝑥
+ 𝑣

𝜕𝜔𝑦

𝜕𝑦
+ 𝑤

𝜕𝜔𝑦

𝜕𝑧

= 𝜔𝑥
𝜕𝑣

𝜕𝑥
+ 𝜔𝑦

𝜕𝑣

𝜕𝑦
+ 𝜔𝑧

𝜕𝑣

𝜕𝑧
+ 𝜈𝛻2𝜔𝑦 

𝜕𝜔𝑧
𝜕𝑡
+ 𝑢

𝜕𝜔𝑧
𝜕𝑥
+ 𝑣

𝜕𝜔𝑧
𝜕𝑦
+ 𝑤

𝜕𝜔𝑧
𝜕𝑧

= 𝜔𝑥
𝜕𝑤

𝜕𝑥
+ 𝜔𝑦

𝜕𝑤

𝜕𝑦
+ 𝜔𝑧

𝜕𝑤

𝜕𝑧
+ 𝜈𝛻2𝜔𝑧 

 

Note:   

 

(1) Equation does not involve p explicitly 

 

(2) For 2-D flow (𝜔 ⋅ 𝛻)𝑉 = 0 since ω is perpendicular 

to V and there is no deformation of ω, i.e., 

 
𝐷𝜔

𝐷𝑡
= 𝜈𝛻2𝜔 
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To determine the pressure field, the divergence of the N-S 

equation is taken. 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 

𝜌 (
𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗
) = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗
2  

)(NS : 

  ∇ ∙ [
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉 = −∇(

𝑝

𝜌
) + 𝜈∇2𝑉] 

∇ ∙ (
𝜕𝑉

𝜕𝑡
− 𝜈∇2𝑉) + ∇ ∙ (𝑉 ∙ ∇𝑉) = −∇2 (

𝑝

𝜌
) 

(
𝜕

𝜕𝑡
− 𝜈∇2) ∇ ∙ 𝑉 + ∇ ∙ (𝑉 ∙ ∇𝑉) = −∇2 (

𝑝

𝜌
) 

𝑉 ∙ ∇𝑉 = 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

 

∇ ∙ (𝑉 ∙ ∇𝑉) =
𝜕

𝜕𝑥𝑖
(𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗
) =

𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗
+ 𝑢𝑗

𝜕

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

 

 

∇ ∙ (𝑉 ∙ ∇𝑉) =
𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

 

(
𝜕

𝜕𝑡
− 𝜈𝛻2)𝛻 ⋅ 𝑉 = −

1

𝜌
𝛻2𝑝 −

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 

For 𝛻 ⋅ 𝑉 = 0:  𝛻2𝑝 = −𝜌
𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 

Poisson equation determines pressure up to additive 

constant. In the end, 𝜇 not in equation; however, RHS is 

f(𝜇). 
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Alternative derivation vorticity transport equation 

 
𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ ∇𝑉 = −

1

𝜌
∇𝑝 + 𝜈∇2𝑉  

 

𝑉 ⋅ ∇𝑉 = ∇(
1

2
𝑉 ⋅ 𝑉) − 𝑉 × 𝜔  

∇2𝑉 = ∇(∇ ⋅ 𝑉) − ∇ × (∇ × 𝑉) = −∇ × 𝜔  

 
𝜕𝑉

𝜕𝑡
+ ∇𝐾 − 𝑉 × 𝜔 = −

1

𝜌
∇𝑝 − 𝜈∇ × 𝜔  

 
𝜕𝑉

𝜕𝑡
− 𝑉 × 𝜔 + ∇(𝐾 +

𝑝

𝜌
)

⏟      
= −𝜈∇ × 𝜔       Stokes form NS 

Bernoulli equation for steady inviscid irrotational flow 

 

∇ × (𝑉 × 𝜔) = 𝑉(∇ ⋅ 𝜔) + 𝜔 ⋅ ∇𝑉 − 𝜔(∇ ⋅ 𝑉) − 𝑉 ⋅ ∇𝜔 

= 𝜔 ⋅ ∇𝑉 − 𝑉 ⋅ ∇𝜔  

 

∇ × (∇ × ω) = ∇(∇ ⋅ 𝜔) − ∇2∇ ⋅ 𝜔  

 
∂ω

∂𝑡
+ 𝑉 ⋅ ∇ω = ω ⋅ ∇𝑉 + ν∇2ω =

𝐷ω

𝐷𝑡
  

 

viscous diffusion 
∂ω

∂𝑡
+ 𝑉 ⋅ ∇ω = ω ⋅ ∇𝑉⏟  + ν∇

2ω⏞  =
𝐷ω

𝐷𝑡
 =  

Vortex stretching / turning 

  

rate of change following 

fluid particle 
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The relative motion between two neighboring fluid 

particles. 

 

  

 

 

 

@ B: V dV V V dr+ = +   1st order Taylor Series 

 

𝑢𝑏 = 𝑢𝑎 + 𝑢𝑥  𝑑𝑥 + 𝑢𝑦  𝑑𝑦 + 𝑢𝑧  𝑑𝑧 + 𝑢𝑥𝑥
𝑑𝑥2

2
+ ⋯ 

𝑣𝑏 = 𝑣𝑎 + 𝑣𝑥  𝑑𝑥 + 𝑣𝑦  𝑑𝑦 + 𝑣𝑧  𝑑𝑧 + 𝑣𝑥𝑥
𝑑𝑥2

2
+ ⋯ 

 𝑤𝑏 = 𝑤𝑎 + 𝑤𝑥  𝑑𝑥 + 𝑤𝑦  𝑑𝑦 + 𝑤𝑧  𝑑𝑧 + 𝑤𝑥𝑥
𝑑𝑥2

2
+ ⋯ 

 
 

𝑑𝑉 = (uB-uA, vB-vA, wB-wA) 
 

𝑑𝑉 = 𝛻𝑉 ⋅ 𝑑𝑟 = [

𝑢𝑥 𝑢𝑦 𝑢𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧
𝑤𝑥 𝑤𝑦 𝑤𝑧

] [
𝑑𝑥
𝑑𝑦
𝑑𝑧

] = 𝑒𝑖𝑗𝑑𝑥𝑗 

 

 

 

 

 

 

 

B 

relative motion 

deformation rate 

tensor = 
ij

e  

𝑑𝑉 = 𝑑𝑉𝑖 = (𝑑𝑉1, 𝑑𝑉2, 𝑑𝑉3) 

dr  

A (u,v,w) = V 
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Vortex Stretching & Turning 

 

Consider two neighboring fluid particles 

 

 

 

 

 
𝑑𝑥

𝑑𝑡
= 𝑢(𝑥, 𝑡) 𝑋(𝑡) = 𝑋(0) + ∫ 𝑢

𝑡

0
 𝑑𝑡 

𝑋(Δ𝑡) = 𝑋(0) + 𝑢(𝑋(0), 0)Δ𝑡  Δ𝑡 small 

𝑌(Δ𝑡) = 𝑌(0) + 𝑢(𝑌(0), 0)Δ𝑡 
 

𝑟(Δ𝑡) = 𝑌(Δ𝑡) − 𝑋(Δ𝑡) = 𝑌(0) − 𝑋(0)⏟        
𝑟(0)

+ [𝑢(𝑌(0), 0) − 𝑢(𝑋(0), 0)]⏟                Δ𝑡 

 

As per derivation 𝑑𝑉 = ∇𝑉 ⋅ 𝑑𝑟 
 

𝑢(𝑌(0), 0) = 𝑢(𝑋(0), 0) + ∇𝑢 ⋅ 𝑟(0) ← {
𝑌(0) = 𝑋(0) + 𝑟(0)

𝑟(0) small w.r.t. TS
 

 

𝑟(Δ𝑡) = 𝑟(0) + ∇𝑢 ⋅ 𝑟(0) Δ𝑡          𝑟(Δ𝑡) = 𝑟̂(Δ𝑡) 𝑅(Δ𝑡) 

                                                                                   𝑟(0) = 𝑟̂(0) 𝑅(0) 

𝑟̂(Δ𝑡) 𝑅(Δ𝑡) = 𝑟̂(0) 𝑅(0) + ∇𝑢 ⋅ 𝑟̂(0) 𝑅(0) Δ𝑡 
 

 
𝑟̂(Δ𝑡) − 𝑟̂(0)

Δ𝑡
=
−𝑟̂(0)

𝑅(0)

[𝑅(Δ𝑡) − 𝑅(0)]

Δ𝑡
+
𝑅(0)

𝑅(Δ𝑡)
∇𝑢 ⋅ 𝑟̂(0) 

 

lim
Δ𝑡→0

𝑑𝑟̂

𝑑𝑡
+ 𝛼 𝑟̂ = ∇𝑢 ⋅ 𝑟̂ 

𝛼 =
1

𝑅

𝑑𝑅

𝑑𝑡
 = fractional rate of change of line element 𝑟 

 

𝑋(𝑡) 
𝑟̂ =

𝑟

𝑅
,  where 𝑅 = |𝑟| 

 

÷ (𝑅(Δ𝑡) Δ𝑡) 
And −𝑟̂(0)/Δ𝑡 

𝑌(𝑡) 

𝑟 = 𝑌 − 𝑋 
 

𝑟(𝑡) 



26 

 

Let 𝑟̂ = 𝜔/|𝜔|,  unit vector in direction vorticity 

∇𝑢 ⋅ 𝜔⏟  = 𝛼 𝜔 + |𝜔|
𝑑

𝑑𝑡
(
𝜔

|𝜔|
) 

 

 

 

(1) stretching in direction 𝜔 due 
1

𝑅

𝑑𝑅

𝑑𝑡
, which strengthens 

or weakens 𝜔 

 

(2) 𝑢𝑠𝑖𝑛𝑔 
𝜔

|𝜔|
⋅
𝜔

|𝜔|
= 1 

𝑑

𝑑𝑡
[
𝜔

|𝜔|
⋅
𝜔

|𝜔|
] = 0 = 2

𝜔

|𝜔|
⋅
𝑑

𝑑𝑡
(
𝜔

|𝜔|
) 

 

Shows (2) is a vector perpendicular 𝜔 , therefore it 

represents turning of 𝜔 into two orthogonal directions 

 

This analysis shows how ∇𝑢
‾
⋅ 𝜔
‾

 term can stretch and turn 

vorticity as it evolves in time and can transfer energy 

between smaller scales via the Richardson energy 

cascade. 

 

∇𝑢 ⋅ 𝜔 = [

𝑢𝑥 𝑢𝑦 𝑢𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧
𝑤𝑥 𝑤𝑦 𝑤𝑧

] [

𝜔𝑥
𝜔𝑦
𝜔𝑧
] 

  

vortex stretching & 

turning term in vorticity 

transport equation or 

contraction  
 

(1)  
 (2)  
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𝜔 = 𝜔1𝑖̂ + 0𝑗̂ + 0𝑘̂,  i.e. 𝜔2 = 𝜔3 = 0 

 

Neglecting 𝜈∇2𝜔 

 
𝐷𝜔1

𝐷𝑡
= 𝜔1𝑢𝑥  

𝐷𝜔2

𝐷𝑡
= 𝜔1𝑣𝑥  

𝐷𝜔3

𝐷𝑡
= 𝜔1𝑤𝑥  

 

using previous analysis: 

𝜔1𝑢𝑥 = 𝛼 𝜔1                                     𝛼 =
𝜕𝑢

𝜕𝑥
 

𝜔1𝑣𝑥 = 𝜔1
𝑑

𝑑𝑡
(
𝜔

|𝜔|
) 𝑖̂

𝜔1𝑤𝑥 = 𝜔1
𝑑

𝑑𝑡
(
𝜔

|𝜔|
) 𝑗̂
           } 

 

 

In the general case, arbitrarily oriented vorticity filaments are 

simultaneously stretched or compressed and reoriented by the 

shearing motions. The propensity for vorticity to stretch and reorient 

is the main driving force behind the appearance and maintenance of 

turbulence in flowing fluids. In essence, this physical process is how 

energy is transferred to small scales, where the action of viscous 

forces in smoothing the flow and dissipating energy become 

important. A discussion of these and other aspects of turbulent flow 

may be found in several books (e.g., Bernard & Wallace 2002; Pope 

2000).  

creation ω2 and ω3 due to 𝑣𝑥 and 

𝑤𝑥 Fig illustrates production 

ω2from ω1 where 𝑣𝑥 is component 

of 𝑑(ω/|ω|)/𝑑𝑡 projected onto y 

direction 
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Vortex stretching and reorientation: fundamental importance 

energy cascade 

 
 

Curvilinear coordinate tangent Ω: 𝑒𝑠̂ = Ω/|Ω| 

Ω ⋅ ∇𝑢 = Ω ⋅ (𝑒𝑠̂
𝜕

𝜕𝑠
+ 𝑒𝑛̂

𝜕

𝜕𝑛
+ 𝑒𝑚̂

𝜕

𝜕𝑚
)𝑢  

where Ω ⋅ 𝑒𝑛̂   = Ω ⋅ 𝑒𝑚̂ = 0 and Ω ⋅ 𝑒𝑠̂ = Ω = |Ω| 

= Ω 
𝜕𝑢

𝜕𝑠
 =  Ω × 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒  

  𝑢 direction Ω 

= ( Ω 
𝜕𝑢

𝜕𝑠⏟  
stretching

,   Ω 
𝜕𝑣

𝜕𝑠
,         Ω 

𝜕𝑤

𝜕𝑠⏟          
turning about n & m axes

) 

 
𝐷ω

𝐷𝑡
= ω ⋅ ∇𝑢,  neglect ν 

𝐷ω

𝐷𝑡
= ω ⋅

∂𝑢

∂𝑠
 

𝐷ω𝑠

𝐷𝑡
= Ω 

∂𝑢𝑠

∂𝑠
 important turbulent flow 

𝐷ω𝑛

𝐷𝑡
= Ω 

∂𝑢𝑛

∂𝑠
  

𝐷𝜔𝑚

𝐷𝑡
= Ω 

𝜕𝑢𝑚

𝜕𝑠
 

Cartesian coordinates: 

Ω ⋅ ∇𝑢

= (Ω𝑥𝑢𝑥⏟  
stretching

+ Ω𝑦𝑢𝑦 + Ω𝑧𝑢𝑧)⏟        
turning

𝑖̂

+ (Ω𝑥𝑣𝑥 + Ω𝑦𝑣𝑦 + Ω𝑧𝑣𝑧)𝑗̂

+ (Ω𝑥𝑤𝑥 + Ω𝑦𝑤𝑦 + Ω𝑧𝑤𝑧)𝑘̂ 

Ω𝑖 =component 

Subscript 𝑉= derivative 

𝜔 ⋅ 𝜔 = 𝜔𝑥
2 + 𝜔𝑦

2 +𝜔𝑧
2 = 𝜔 

|𝜔| = √𝜔 

𝑒𝑠̂ = 𝜔/|𝜔| 

𝜔 ⋅ 𝑒𝑠̂ = 𝜔/√𝜔 = √𝜔 
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Stream Function Vorticity Approach (restricted 2D) 

 

𝑢 = 𝜓𝑦 ,  𝑣 = −𝜓𝑥,  𝜔𝑧 = 𝑣𝑥 − 𝑢𝑦 =  𝜔 

 

𝜓𝑥𝑥 +𝜓𝑦𝑦 = −𝜔    Poisson equation 

 

𝜔𝑡 + 𝑢𝜔𝑥 + 𝑣𝜔𝑦 = 𝜈∇
2𝜔 

𝜔𝑡 + 𝜓𝑦𝜔𝑥 − 𝜓𝑥𝜔𝑦 = 𝜈(𝜔𝑥𝑥 +𝜔𝑦𝑦)   parabolic t 

elliptic (x, y) 

two equations two unknowns 𝜔 and 𝜓 

 

∇2𝑝 = 2𝜌(𝑢𝑥𝑣 − 𝑢𝑦𝑣𝑥) 

=  2𝜌(−𝜓𝑦𝑥𝜒𝜓𝑥𝑦 +𝜓𝑦𝑦𝜓𝑥𝑥) 

= 2𝜌(𝜓𝑥𝑥𝜓𝑦𝑦 − 𝜓𝑥𝑦
2 ) 

 

vs primitive variable approach 

 

∇ ⋅ 𝑉 =  0 
𝐷𝑉

𝐷𝑡
= −∇(𝑝/𝜌) + 𝜈∇2𝑉 

∇2(𝑝/𝜌) = −
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑥𝑖
𝜕𝑢𝑗

 

 

In both cases need appropriate initial and boundary 

conditions 
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3-46 Derive the two-dimensional Poisson relation for pressure, Eq. (3-256). 

∇ ⋅ [
𝜕 𝑉

𝜕𝑡
+ 𝑉 ⋅ ∇ 𝑉 = −∇(

𝑝

𝜌
) + 𝜈∇2 𝑉] 

∇2 (
𝑝̂

𝜌
) = −∇ ⋅ ( 𝑉 ⋅ ∇ 𝑉)                             𝑉 = 𝑢𝑖̂ + 𝑣𝑗̂ 

∇=
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ 

∇ ⋅ [(𝑢𝑢𝑥 + 𝑣𝑢𝑦)𝑖̂ + (𝑢𝑣𝑥 + 𝑣𝑣𝑦)𝑗̂] 

=
𝜕

𝜕𝑥
(𝑢𝑢𝑥 + 𝑣𝑢𝑦) +

𝜕

𝜕𝑦
(𝑢𝑣𝑥 + 𝑣𝑣𝑦) 

1         2          3            4          5           6         7        8 

= 𝑢𝑥
2 + 𝑢𝑢𝑥𝑥 + 𝑣𝑥𝑢𝑦 + 𝑣𝑢𝑦𝑥 + 𝑢𝑦𝑣𝑥 + 𝑢𝑣𝑥𝑦 + 𝑣𝑦

2 + 𝑣𝑣𝑦𝑦 

 

2 + 6 = 𝑢𝑦(𝑢𝑥 + 𝑣𝑦) = 0 

4 + 8 = 𝑣𝑥(𝑢𝑥 + 𝑣𝑦) = 0 

3 = 5 = 2𝑢𝑦𝑣𝑥 

1 + 7 = −𝑢𝑥𝑣𝑦 − 𝑣𝑦𝑢𝑥 = −2𝑢𝑥𝑣𝑦 

 

∇2𝑝̂ = 2(𝑢𝑥𝑣𝑦 − 𝑢𝑦𝑣𝑥) = ∇
2𝑝 

 

To do this, write the x- and y-momentum (Navier–Stokes) equations in the forms 

∂𝑝

∂𝑥
= ⋯(1)                       

∂𝑝

∂𝑦
= ⋯(2) 

 

Take ∂/ ∂𝑥(Eq. 1) and add it to ∂/ ∂𝑦(Eq. 2) to give ∇2𝑝. The gravity term vanishes 

(assuming that 𝑔is constant) and the viscous terms (assuming constant 𝜇) vanish by 

virtue of the continuity equation. What remains is a string of 8 acceleration-related terms: 

∇2𝑝 = − 𝜌 [(
𝜕𝑢

𝜕𝑥
)
2

+ 𝑢
𝜕2𝑢

𝜕𝑥2
+
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕2𝑢

𝜕𝑥𝜕𝑦
+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
+ 𝑢

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ (
𝜕𝑣

𝜕𝑦
)
2

+ 𝑣
𝜕2𝑣

𝜕𝑦2
] 

1              2           3               4            5               6            7             8 

Now combine as follows: Terms 2 and 6, when (𝑢  ∂/ ∂𝑥) is factored out, vanish due to 

continuity; likewise for terms 4 and 8 when (𝑣 ∂/ ∂𝑦) is factored out. Replace one 
(∂𝑢/ ∂𝑥) in term 1 by(− ∂𝑣/ ∂𝑦), and replace one (∂𝑣/ ∂𝑦) in term 7 by (− ∂𝑢/ ∂𝑥), 
thus making terms 1 and 7 equal. Terms 3 and 5 are already equal. The final result is Eq. 

(3-256): 

∇2𝑝 = 2𝜌 (
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
)     (Answer) 

 

 

See Appendix B 
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3. Kinematic Decomposition of flow fields 

 

Previously, we discussed the decomposition of fluid 

motion into translation, rotation, and deformation.  This 

was done locally for a fluid element.  Now we shall see 

that a global decomposition is possible. 

 

Helmholtz’s Decomposition:  any continuous and finite 

vector field can be expressed as the sum of the gradient of 

a scalar function 𝜑  plus the curl of a zero-divergence 

vector A.  The vector A vanishes identically if the original 

vector field is irrotational.   

 

𝑉 = 𝑉𝜔 + 𝑉𝜑 

 

Where:   𝜔 = 𝛻 × 𝑉𝜔 

              0 = 𝛻 × 𝑉𝜑  

 

 

                    →  𝑉𝜑 = 𝛻𝜑 

 

If  𝛻 ⋅ 𝑉 = 𝛻 ⋅ 𝑉𝜔 + 𝛻 ⋅ 𝑉𝜑 = 0 

 

Then 𝛻2𝜑 = 0  The GDE for   is the Laplace Eq. 

And  Vω = ∇ × A  Since    ∇ ⋅ (∇ × A) = 0 

 

 

The irrotational part of 

the velocity field can be 

expressed as the gradient 

of a scalar. 
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𝛻 × 𝑉𝜔 = 𝜔 = 𝛻 × 𝛻 × 𝐴 

           = −𝛻2𝐴 + 𝛻(𝛻 ⋅ 𝐴) 

i.e.  𝛻2𝐴 = −𝜔 

The solution of this equation is  𝐴 =
1

4𝜋
∫
𝜔

|𝑅|
 𝑑∀ 

Thus 𝑉𝜔 = −
1

4𝜋
∫
𝑅×𝜔

|𝑅|
3  𝑑∀ 

Which is known as the Biot-Savart law. 

 

The Biot-Savart law can be used to compute the velocity 

field induced by a known vorticity field.  It has many 

useful applications, including in ideal flow theory (e.g., 

when applied to line vortices and vortex sheets it forms 

the basis of computing the velocity field in vortex-lattice 

and vortex-sheet lifting-surface methods). 

 

The important conclusion from the Helmholtz 

decomposition is that any incompressible flow can be 

thought of as the vector sum of rotational and irrotational 

components.  Thus, a solution for irrotational part V
  

represents at least part of an exact solution.  Under certain 

conditions, high Re flow about slender bodies with 

attached thin boundary layer and wake, 𝑉𝜔 is small over 

much of the flow field such that 𝑉𝜑  is a good 

approximation to 𝑉 .  This is probably the strongest 

justification for ideal-flow theory: incompressible, 

inviscid, and irrotational flow. 

Again, by vector identity 


