Chapter 1 & 2 (3.2)-2026
Reynolds Transport Theorem

Preliminary:  Leibniz  integral theorem =  derivative

single variable integral having f(x,t) integrand and limits
a(t)and b(t).

d P® b(t) af (x,t) db(t) da(t)
de a(t) S t) dx = L(t) ot dx + dt f(b(0),t) — Tf(a(t), t)
(1) ) 3)

X

FIGURE 3.19  Graphical illustration of the Liebniz theorem. The three marked areas correspond to the three
contributions shown on the right in (3.30). Here da, db, and dF /3t are all shown as positive.

(1) integral of % with lower and upper limits a(t) and b(t)
(2) gain fat upper limit moving at %
(3) loss fat lower limit moving at %

Total derivative LHS = integral partial derivatives with lower
and upper limits a(t) and b(t) + terms that account for time
dependence of a and b.



Generalization 3D: RTT

ndA

AM)—
A+ A —

T, p———

FIGURE 3.18 Geometrical depiction of a control volume V*(f) having a surface A*(t) that moves ata nonuniform
velocity b during a small time increment Af. When At is small enough, the volume increment AV = V¢ 4+ At) — V()
will lie very near A*(f), so the volume-increment element adjacent to dA will be (bAf) « ndA where n is the outward
normal on A¥t).

V* = CV bounded by A"= CS with outward normal n and
nonuniform velocity b . Assume F(x,t)is single valued

continuous function.

4 ) av = tim — U F(xt+ At) dV — t)dV]
e X, = 1imm — X, X
dt V(D) At—0 At V*(t+At) }65/

Define AV = V*(t+At) — V*(1)

“order TS: F(x,t + At) = F(x,t) +%At for At > 0

f F(x, t+ At) dv=f dV+f ;A dV+f F(x,t) dV
V*(t+At) V*(t) Av

oF
+ f ?Kt av
av Ot

o jF(x t) dv _AtinoEU — At dV+JAVF(§,t) dV]

Need relationship AV and At: AV = (b At) - ndA*
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Therefore: [, F(x,t) dV = [,.F(x,t)(bAt) -n dA*

where all AV summed via surface integral.

1
m —:
Thus taking llt lim =
d OF )
— F(g,t)dV=f —dV+fFQ-QdA F = F(x,t)
dt Jy«(p) vee) 9 :

Inflows/outflows F(x,t) accounted for via sign b - n, which
monitors whether A*(t) is advancing b-n > 0 or retreating
b-n<0.

Physical Interpretation

(1) F = 1: conservation of volume

Exercise 3.33. Starting from (3.35). set F = | and derive (3.14) when b = u and V@) =6V—0

Solution 333 With F=1.b = u. and V*(r) = 8V with surface 8A. (3.35) becomes:

—]dV 0+ [u ndA.
dt & &

The first integral is merely dV. Use Gauss' divergence theorem on the second term to convert it
to volume integral.

5V V-udV.
dt )= J
As 8V — 0 the integral reduces to a product of OV and the integrand evaluated at the center point
of 6V. Divide both sides of the last equation by 6V and take the limit as 6V —0

1 d 1 - i "
61\11_03‘7—17(6‘ )= GQ%EVS(V-WIV =61{;1_1_})67[(V-u)6‘- +.]=V-u=5,.
and this 1s (3.14).
1 D(8V) N N
= Uy T U W; = U;;
8V Dt y
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DF _ OF _ OF
(2)RTT—D—t—E+g-VF— —+u Uip

for V¥(t) =0V —>0and b=u

3.38. Show that (3.35) reduces to (3.5) when V¥(r) = 6V— 0 and the control surface velocity b 1s
equal to the fluid velocity u(x.r).

Solution 3.35. When V#(r) = 8V wath surface 4. 6V is small, and b = u. 6V represents a fluid
particle. Under these conditious (3.35) becomes:

and the nme dcri\-ati\e is ev aluated fOllO“ ng 6V. Use Gauss' divergence theorem on the final
term to convert it to a volume integral,

JF(x.Nu ndA = [V-(F(x,nu)dV .

44 o

dV + [ F(x,H)u-ndA
&

so that (3.35) becomes:
% [Fanav - [|% f;") V- (F(x, t)u)]d f aF(x, ’)+F(x,:)v-u+(u-V)F(x.:)]dv.
at g &

where the second equality follow's from expanding thc dn ergence of the product Fu.
As OV — 0 the various integrals reduce 1o a product of 8V and the integrand evaluated at

the center point of 8V. Divide both sides of the prior equation by 8V and rake the limit as V— 0
to find:

f oF (x.1)

ot

8F(1 1)
ot

' f F(x.1)dV = lim
& -°6V d

[Fx.néV +..]= hm

+F(x.)V-u+(a V)F(x.r)]dV ;

6v(

__F(t N+ F(x.1) hm-—l—i(év) 0F‘(9::,”

‘1‘11_0-67-‘—1- +F(x.)V-u+(u V)F(x.t))bv + ] or

+ F(x.)V-u+(a V)F(x.1).
where the product rule for denivauve has been used on product FOV in [.]J-braces on the left.
From (3.14) or Exercise 3.33: 61‘113‘ gl‘-,-%((W)- V-u. so the second terms on both sides of the
last equation are equal and may be subtracted out leaving:

d dF(x.1)

ZF(:.() - —8!_ +(u- V)F(x.0).

and this 1s (3.5) when the identification DjDr = d/dr 1s made.



t+ At

Relationship CV & material volume = mv

d OF
(Dmv: — [, F(xt) dV = [, o dV + [, Fu-ndA

V(t) = MV A(t) = MV boundary with local n moving at
nonuniform velocity u(x,t)

Green’s theorem: [ V-bdV = [.b-ndA

d OF
— de=j [—+V-(Fu)]dV
dt Joy v LOE =

. d oF
lim —j FdV=—+V-(Fu)
MV-0 dt MV dt —

F = (Bp and LHS = distys

(2) Assume at time t MV & CV coincide

d oF
— F dV = —dV+jFu-ndA*

However, from RTT: .2 av=2<( Fav - [, Fu nada

. d _d —
Therefore: — [, FaVv=—[ FdV+/[,F (g %)

up

Provides relationship % JyyF dV & RHS which

represents equivalent change for CV




Application CV GDE

dB

F=Bp B=_ B=[pdm=[,ppdV

dt

dBsys _ d _d
— = =—JwBpdV=—[,BpdV+ [ Bpugp-ndA

Pp=(1,u, e)and up =u—ug

=< (m, mu, E) =RHS = (0, £ F, ¢ — W)

Specitic CV cases depending on Vs (x¢s(¢), t).

1) Deforming CV:

(a) Vs = Vs(x¢s(t), t) non-uniform/accelerating

velocity

(b) V., = Vi(xcs(t)) uniform/constant velocity
(_steacg nToVing)

© [ Vs(xcs(t)) - ndA = 0 as a whole at rest
(stationary)

2) Non deforming CV:

(a) V., = V,(t) accelerating velocity
(b) V. = constant velocity, i.e., relative inertial

coordinates (steady moving)
(c) V; = 0 at rest (stationary)
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Next step: apply B = (1, u, )
I. Conservation of mass Bgys=m, p=1

(1) most general case

dm d p(x.t) and up
E=O=%V*pdV+j*pu_RQdA ﬂ&ﬁzf(ﬁot)
d (2) other specific cases
T CVp av = Lsp up -nda depend on p # f(t) or p # f(x)
and form b(x,t) as per RTT
rate of decrease = net outflow for V*

1.e., deforming or non-deforming and
each case either accelerating / steady moving / or
stationary



II. Conservation of momentum

Bsys=mu B=u CV=V" C(CS=4"

dBy,s d d
= =— dv + .ndA
ar =g =g eu f Uy
RHS = ) F = J pg AV + | f(n,x,t) dA = RHS
actondV V* v . N y _
body force surface force

Here again: 1) most general case p = p(x,t) and u and ug
all f(x,t) and other specific cases depend on different forms
b(x,t) as per RTT for V*.

Body force pg dV acts on dV without physical contact and

is conservative since (by definition) conservative body
forces can be expressed as the gradient of a potential

function.
m/ Vo 0P
=: m/s? = — or g,=———
: . J Ji 0x;
€ per unit m
PE gz m%s? e = ‘ g ‘ Z =gz ® = force potential
. A ith uni
KE = u?/2 g=—g2% Wl’.[ units energy per
— unit mass

internal: u



Surface forces act on fluid elements via direct contact with
the CS with units of stress N/m? and normal and tangential
components.

FIGURE 2.5 Force f per unit area on a surface element whose outward normal is n. The areas of the tetrahe-
dron’s faces that are perpendicular to the ith coordinate axis are dA;. The area of the largest tetrahedron face is dA.
As in Figure 2.4, the directions of positive normal and shear stresses are shown.

Arbitrarily oriented dA with normal n = n;.

Surface force z (n, x,t) = f; = n; T;; per unit area.

fi =n,Ty1 + n,T,4 +n3T3; T;; = stress tensor
f2 =nTip + 13T, + 373,

f3

Normal component=n - f = n;f;

nyTi3 +nyT3 + n3Tss

Tangential component vector = f — (ﬂ - f ) n

= fr — (ifi)ny

n-f=mfi+nfr +nzf



Cubical element

x-face: n = (1,0,0) fr =T,

fx = Tial + Tiof + Ti3k fa=Ti;
f3=Tis

n- f_x = T;; Tangential component ]i = ]i — T4l

= Tyof + T3k

y-face: n =(0,1,0) fi =Ty
f_y — TZli + Tzzj + ngl’é fZ = T22
f3 = T3

z-face: n=(0,0,1)
fi =Tz

fz = T3,
f3 =T33

é — T3li + ngj + ngie
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Writing momentum equation for MV: u,, =0, V¥ =V, A*=A
djpudV J (pu)dV+fpgg-QdA
= f pg dV+jf dA
v = A

[ypuu-ndA=[V-(puu)av = fva%(ﬁuiuj) av

JT;
[,f dA=[,nT; dA= [, T’dV
0
j [ (pu;) + (pu uj) a_(TiJ')] av =0
Xj
. d 0
dl‘}'r_l’)lol a(pui) + E(puiuj) =pg; t+ %(Tij)
0 d _op aui aui
- p%+ ot o (ou )] + oy o

= 0 continuity

ou;

ou; ouj _ Du;
_p6t+p]6x P

Dt
p % = pg; + 5 (T; j) Cauchy equation of motion
]
Unknowns: p, u, Ty = 1 + 3 + 9 = 13 need stress—strain
relationship

Equations: 1 +3+2=6

f

Thermodynamic equations (p, p)
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row x column V = 1%order tensor

Inner Product 1 %3 (column matrix)

Uy
u-v wy; UV UT =[up u; usj [W‘
Uz

m n n p

m p
A=1Xx3 B=3x1 C=1x1

uTv = 1x1 =0 order tensor
n=3

Cij = Z aixbgj i=1m=1j=1,p=1=ay1b11 + as;by; + ay3b3;
k=1

- ulvl + uzvz + u3173

Vector Product
u-v uivj U VT U [ul U u3]

3x1 1%x3 = 3x%x3

m n n p m p
_ vn=1 . .
Cij = Lk=1 ailblj L= 1,3 ] = 1,3
a11b11 a11b12 a11bq3 U1V U1V U103

Ay1b11 Az1b15 Az1bq3 UyV1 UpVy Uy U3
(31b11 Q31b13 A31b3 U3V1 U3 Vp U3z V3
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Consider the equation for Newtonian fluid

FIGURE 2.4 Tlustration of the X,
stress field at a point via stress A T
components on a cubic volume F :3
element. Here each surface may B
experience one normal and two | A—P s
shear components of stress. The E l L T
directions of positive normal and " I T, A -
shear stresses are shown. For x| «—|r
clarity, the stresses on faces FBCG Ty —t—— & . =
and CDHG are not labeled. T, <, %,
Tll G__ PRSI —
- - ):' - 1" c
H
{ D
x

Stress at a point fully described by Tjj: 9 components

However,

T..

Ti ji

i =
is symmetric such that only six independent components;
since, the stresses themselves cause no rotation, which 1s
shown by considering the differential equation of angular
momentum for limit dV = dx; dx, dx; — 0 assuming no
external body force moments o p such as electric field or
polarized fluid molecules.

Tij=f (uij) = constitutive equation
= u;; Newtonian fluid

14



Next, we need to relate the stresses oij to the fluid motion,
l.e., the velocity field. To this end, we examine the relative
motion between two neighboring fluid particles.

@B: V+dV =V +VV.dr 1%order Taylor Series

dx?
Up =ua+uxdx+uydy+uzdz+uxx7+

dx?
Vp =va+vxdx+vydy+vzdz+vxx7+

2
Wb=Wa+wxdx+wydy+wzdz+wxxd%+

dV = (us-Ua, VB-Va, Wa-Wa)

u, u, U, |[dx]
dv=WW.dr=lv, v, v, | dy|=g;dX,
[ W, w,w, || dz]

relative motion

deformation rate
av = dv; = (dV,, dV,, dVs)

tensor = €

ij

15



aui 1 aui au] 1 aui au]
= = + + = — = Sij + a)ij

el-j = ==
symmetric part  anti—symmetric part
Eij=Eji Wij==wjj
n
f—/%
0 1(u —-V,) l(u —W,)
o\ X o\ X
1 1 .. )
w; =| =(v,—u,) 0 —(v, —w,) | =rigid body rotation
2 , 2 of fluid element
4
1 1
E(Wx_uz) E(Wy_vz) 0
%,—/
i S |

where &= rotation about x axis
n = rotation about y axis
¢= rotation about z axis

Note that the components of wj; are related to the vorticity
vector defined by:

@=VxV =W, —V,) T +(U,-W,) J+(V,-u) k=0 +o,]+ok
| — _
28 2n 2¢

= 2 x angular velocity of fluid element

16



g; =rate of strain tensor

X

1 1
u “(u,+v) =(u, +w
2(y <) 2(Z <)

1 1
= E(vx+uy) v, E(Vz-i—Wy)

1 1
— (W, +U —\W, +V W
2( X z) 2( y z) z

U, +V, +W, = V-V = elongation (or volumetric dilatation)
_ 1 DV
of fluid element =Y Dt
1 : :
E(uy +v ) = distortion wrt (x,y) plane
1 : :
E(uz +w ) = distortion wrt (X,z) plane

%(VZ +w,) = distortion wrt (y,z) plane

Thus, general motion consists of:

1) pure translation described by V

2) rigid-body rotation described by o

3) volumetric dilatation described by V-V

4) distortion in shape described by si 1#]

17



It Is now necessary to make certain postulates concerning
the relationship between the fluid stress tensor (i) and
rate-of-deformation tensor (ejj). These postulates are based
on physical reasoning and experimental observations and
have been verified experimentally even for extreme
conditions. For a Newtonian fluid:

1) When the fluid is at rest the stress is hydrostatic, and
the pressure is the thermodynamic pressure

2) Since there is no shearing action in rigid body
rotation, it causes no shear stress.

3) 7ij Is linearly related to &j; and only depends on si;.
4) Thereis no preferred direction in the fluid, so that the

fluid properties are point functions (condition of
Isotropy).

18



Using statements 1-3

1(0u; auj
0ij = —POij + Kijmn&mn &5 =5 \5-+ 52
2 \0x; dx;

kijmn = 4" order tensor with 81 components (3x3x3x3) such
that each stress is linearly related to all nine components of

emn.

However, statement (4) requires that the fluid has no
directional preference, i.e., Gij IS independent of rotation of
the coordinate system, which means kijmn IS an isotropic
tensor = 4" order tensor made up of products of dj.

kijmn = A(Sij&mn + M6im5jn + Vain5jm
(A, u,y) = scalars

Lastly, the symmetry condition ci;= oji requires:

kijmn = kjimn

kijmn — /151] 5mn + H6lm6]n + V61n5]m
kjimn A6 6mn + H6]m6m + y5jn51m

Equating the two:

/15ij5mn + Halmdjn + V5ln5]m
= 268;i6mn + UjmOin + ¥SjnOim

19



/16mn(5ij — 5ji) + H(5im5jn — 5jm5in)
+ V(5in5jm - 5jn5im) =0

The first term Is zero since §;; = §;;, therefore:

1(8im8im — 8imbin) + ¥(8inbjm — 6mbim) = 0
Ifi=mandj = n:
“(1 = 6nmOmn) — ¥(1 = SmnOnm) =0
Ifj =mandi =n:
H(Eumbmn — 1) — Y(Emnbnm — 1) =0

le.,
1L =y = VISCOSity

The stress tensor can be written as:
Ojj = _pSij + .U5im5jn€mn + .U5in6jm€mn + /16ij5mn€mn

Take M5im5jn€mn — 5im 0 ifm=i and 5]11 +0 if n=
Jj — equivalent to ue;;. Similar reasoning for other terms:

O-ij = _p6ij + Zl,lgij + /1€mm 511
vv

20



A and u can be further related if one considers mean normal
stress vs. thermodynamic p.

Opx + Oyy + 0,y = 03 =3P+ (2u+31)V-V

1 2
= ——0; +| —u+4|V-V
p 3GII (3# j —_
%f_/

p=mean
normal stress

p—5=(—ﬂ+ijv~\i

Incompressible flow: p=p and absolute pressure is
Indeterminant since there is no equation of state for p.
Equations of motion determineVp.

Compressible flow: p=# p and A = bulk viscosity which
must be determined; however, it is a very difficult

measurement requiring large vv--——f==— _ e,
within shock waves.

Stokes Hypothesis also supported kinetic theory monotonic

gas.
iz—%y
p

P

21



2
Ojj = — (P uELUe K) 0ij + 2ue;; = —poij + Tyj

o= (2 2Y) lates shear stress to strain rat
ij — U axj axi j relates snear Stress 1o strain rate
Generalization 7 = ,u(;—u for 3D flow.
y
= 24TV 42 (au")— +2 [ 7. V+au‘

normal viscous stress

Where the normal viscous stress is the difference between
the extension rate in the x; direction and average expansion
at a point. Only differences from the average =

1/0u v . 8 :
_( Uy oy W) generate normal viscous stresses. For
3 \0x ady 0z

iIncompressible fluids, average =01i.e., V-V = 0.

tXAMPLE 4.8
““te out all the components of the stress tensor T in (x, y, z)-coordinates in terms of u = (i, v, w),
= 23 derivatives.
Sedution
Zvaluate each component of (4.36) and abbreviate Sy, = du/dx + dv/dy + dw/dz = V-u to
] 5 du 2 v du 5 9 (ﬁ 4 6_w>
: —p -+ l'I'-éBE—}_ My — gl’l’ u K ay ox » 0z dx
- dv  du dv 2 dv c')zu)
— —_— —_— P 2 A U V A + A
“(aﬁa) p+ uay-%(ul 3#> u "(az »
dw Jdu dw  dv dw 2
R —p+ 2o+ | — 70 |V
(6r+ ) “<6y+82> P <“ 3“) ’

22



Non-Newtonian fluids:

7;; « &; for small strain rates @, which works well
for air, water, etc. Newtonian fluids

G :
T g+ g Non-Newtonian
e a\t_-J

non-linear  pistory effect
Viscoelastic materials

Non-Newtonian fluids include:

(1) Polymer molecules with large molecular
weights and form long chains coiled together
in spongy ball shapes that deform under shear.

(2) Emulsions and slurries containing suspended
particles such as blood and water/clay.

Shear Shear
stress,|  Plastic _. stress,

,deal Bingham ~ °

7
/
_____//F’Seudoplostic (W < Time independent

I
Dilatant A \ Thixotropic “Z* *g

!
) I
Yield li
f
i

stress ‘ =\ ;
Newtonian W=\ Constant strain rate, e
1 LN
Time rate of deformation, ¢ Time
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Navier Stokes Equations:

DV .
pa=pp-=—pPgk+V- oy

bY _ 12\7+a[2 L7V

P = —PY p 0%, ueij — 5 UV - Yoy

Recall p= p(T) and p increases with T for gases, decreases
with T for liquids, but if it is assumed that p = constant:

DV d 2 0

== —pgk—Vp+2u—¢; ——u—>"Uw-v
Ppp = P9k —Vp+ Ko &~ 3H |4

an

d _ 0 aui + au] _ azui

gij B ax] aX] axi B
DV ~

P =—PY k—Vp+u[

2 0
Vey ———V-V
Dt -

0

For incompressible flow V - V

p—== —pgk—-Vp +uv?y
—VP where p=p+yz
piezometric pressure

Foru=0
p% =—pg k—Vp Euler Equation
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NS equations for p, u constant

DV A
p—=-Vp + ulv?v
Dt
’0[6 + V- VV] —Vp + uvzy
[a_z +V- VV] = ——\7p +vV2V v = Ekinematic
at  — - p — p
viscosity/
diffusion coefficient

Non-linear 2" order PDE, as is the case for p, i not constant.

Combine with 7 - V for 4 equations for 4 unknowns V, p
and can be, albeit difficult, solved subject to initial and
boundary conditions for V, p att = to and on all boundaries

1.e. “well posed” IBVP.
Summary GDE for compressible non-constant property
fluid flow

0

.. P .
Continuity: V- (pV)=0
Momentum: p% =pg—Vp+V-ay

O-ij = Z,UEL']' + AV K6U

~

g =gk
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Dh Dp
Ener —  =—2 4 V- (kVT)+ D
gy P o Dt+ (kVT) +

Primary variables: p,V, T

Auxiliary relations:  p=p (p,T)
h=h

(equations of state)

Restrictive Assumptions:
1) Continuum
2) Newtonian fluids

3) Thermodynamic equilibrium

4) g=—gl€

(p,T)
(p,T)

=
I
N e

5) heat conduction follows Fourier’s law.

6) no internal heat sources.

For incompressible constant property fluid flow

diu=c, dT Cv, U, k, p ~ constant

DT

oC,—=kV'T +®

Dt
For static fluid or V small

oT

oC, E =kVT heat conduction equation (also valid for solids)
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Summary GDE for incompressible constant property fluid
flow (cv ~ cp)

V-V =0

DV A
Pp = PIK=VP+ VY “clliptic”
o, %I =kVT +® where ¢ =, 24

Continuity and momentum uncoupled from energy;
therefore, solve separately and use solution post facto to
get T.

For compressible flow, p solved from continuity equation,
T from energy equation, and p = (p, T) from equation of
state (e.g., 1deal gas law). For incompressible flow, p =
constant and T uncoupled from continuity and momentum
equations, the latter of which contains Vp such that
reference p is arbitrary and specified post facto (i.e., for
incompressible flow, there is no connection between p and
p). The connection is between Vp and vV-V.=0, i.e., a

solution for p requires V-V =0.
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NS:

ou;
PP
du; ou; op d%u;
p(at Y ax,) = ok Mo

V-(NS):
V- |[Z+v-wy = —v(§)+vv2V

V-(a—K—VVZV)+V-(Z-VV)=—V2(B)

dt — p
(i—vvz)v-v+v-(v-vv)=—v2(3)
ot = - = P
V-V = O
— Y 0x;
o ( ou\ Ju oy 0 o
v-(v VK)_G_xi< fﬁ) o2 0% Y g 0
du; du
yy) = 2%
V(W) =5
9] 1 du; ou
—— |72)|7 — 2yt
(at Y 4 p dx; dx;

ForV-V =0: Vzpz—p%%

0x; 0X;j
] l
Poisson equation determines pressure up to additive
constant.
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Approximate Models:

1) Stokes Flow

For low Re:%<<l, V-W~0
| 4

V V . O Linear, “elliptic”

oV 1 , ) Most exact solutions NS; and for ste.ady

E_ =——Vp+WV flow superposition, elemental solutions,
p —_—— - - . L_a'_ . L. ..t

V-(NS)=V’p=0
2) Boundary Layer Equations

For high Re >> 1 and attached boundary layers or fully
developed free shear flows (wakes, jets, mixing layers),

v<<U, o << 2, p. =0, and for free shear flow px = 0.
ox oy

u+v =0
U, +uu, +vu, =—p, +vU, non-linear, “parabolic”
p, =0

-p, =U, +UU_

Many exact solutions; similarity methods
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3) Inviscid Flow

op
—+V-(pV)=0
~ TV(PY)

DV : : " .
pﬁng—Vp Euler Equation, nonlinear,"hyperbolic
pg—?:%+v-(kVT) 0.V, T unknowns and p,h,k = f (p,T)

4) Inviscid, Incompressible, Irrotational

VXV =0-V=Vp
V-V =0->V?p =0 linear elliptic

[ Euler Equation > Bernoulli Equation:
P +§V2 + pgz = const

Many elegant solutions: Laplace equation using
superposition elementary solutions, separation of
variables, complex variables for 2D, and Boundary

Element methods.
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