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Chapter 1 & 2 (3.2)-2026 

Reynolds Transport Theorem 

Preliminary: Leibniz integral theorem = derivative 

single variable integral having 𝑓(𝑥, 𝑡) integrand and limits 

𝑎(𝑡)and 𝑏(𝑡). 

𝑑

𝑑𝑡
∫ 𝑓(𝑥, 𝑡)
𝑏(𝑡)

𝑎(𝑡)

 𝑑𝑥 = ∫
𝜕𝑓(𝑥, 𝑡)

𝜕𝑡

𝑏(𝑡)

𝑎(𝑡)

 𝑑𝑥 +
𝑑𝑏(𝑡)

𝑑𝑡
𝑓(𝑏(𝑡), 𝑡) −

𝑑𝑎(𝑡)

𝑑𝑡
𝑓(𝑎(𝑡), 𝑡) 

(1)               (2)              (3) 

 

(1) integral of 
∂𝑓

∂𝑡
 with lower and upper limits a(t) and b(t) 

(2) gain 𝑓at upper limit moving at 
𝑑𝑏

𝑑𝑡
 

(3) loss 𝑓at lower limit moving at 
𝑑𝑎

𝑑𝑡
 

Total derivative LHS = integral partial derivatives with lower 

and upper limits a(t) and b(t) + terms that account for time 

dependence of 𝑎 and 𝑏. 
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Generalization 3D: RTT 

 

𝑉∗  = CV bounded by A∗ = CS with outward normal 𝑛  and 

nonuniform velocity 𝑏 . sssume 𝐹(𝑥, 𝑡) is single valued 

continuous function. 

𝑑

𝑑𝑡
∫ 𝐹(𝑥, 𝑡)
𝑉∗(𝑡)

 𝑑𝑉 = lim
Δ𝑡→0

1

Δ𝑡
[∫ 𝐹(𝑥, 𝑡 + Δ𝑡)
𝑉∗(𝑡+Δ𝑡)

 𝑑𝑉 − ∫ 𝐹(𝑥, 𝑡)
𝑉∗(𝑡)

𝑑𝑉] 

Define ΔV = 𝑉∗(t+Δt) − 𝑉∗(t) 

1𝑠𝑡 order TS: 𝐹(𝑥, 𝑡 + Δ𝑡) = 𝐹(𝑥, 𝑡) +
∂𝐹

∂𝑡
Δ𝑡 for Δ𝑡 → 0 

∫ 𝐹(𝑥, 𝑡 + Δ𝑡)
𝑉∗(𝑡+Δ𝑡)

 𝑑𝑉 = ∫ 𝐹(𝑥, 𝑡)
𝑉∗(𝑡)

𝑑𝑉 + ∫
∂𝐹

∂𝑡
Δ𝑡

𝑉∗
 𝑑𝑉 + ∫ 𝐹(𝑥, 𝑡)

Δ𝑉

 𝑑𝑉 

+∫
𝜕𝐹

𝜕𝑡
Δ𝑡

Δ𝑉

 𝑑𝑉 

𝑑

𝑑𝑡
∫ 𝐹(𝑥, 𝑡)
𝑉∗

 𝑑𝑉 = lim
Δ𝑡→0

1

Δ𝑡
[∫

∂𝐹

∂𝑡
Δ𝑡

𝑉∗
 𝑑𝑉 + ∫ 𝐹(𝑥, 𝑡)

Δ𝑉

 𝑑𝑉] 

Need relationship ΔV and Δt: Δ𝑉 = (𝑏 Δ𝑡) ⋅ 𝑛 𝑑𝐴∗ 
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Therefore: ∫ 𝐹(𝑥, 𝑡)
Δ𝑉

 𝑑𝑉 = ∫ 𝐹(𝑥, 𝑡)(𝑏 Δ𝑡) ⋅ 𝑛
𝐴∗

 𝑑𝐴∗ 

where all ΔV summed via surface integral. 

Thus taking lim 
Δ𝑡→0

1

Δ𝑡
: 

𝑑

𝑑𝑡
∫ 𝐹(𝑥, 𝑡)
𝑉∗(𝑡)

 𝑑𝑉 = ∫
∂𝐹

∂𝑡𝑉∗(𝑡)

 𝑑𝑉 + ∫ 𝐹
𝐴∗

 𝑏 ⋅ 𝑛 𝑑𝐴∗          𝐹 =  𝐹(𝑥, 𝑡) 

Inflows/outflows F(𝑥,t) accounted for via sign 𝑏 ⋅ 𝑛, which 

monitors whether 𝐴∗(t) is advancing 𝑏·𝑛 > 0 or retreating 

𝑏·𝑛 < 0. 

Physical Interpretation 

(1) F = 1: conservation of volume 

 

1

δ𝑉

𝐷(δ𝑉)

𝐷𝑡
= 𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 𝑢𝑖,𝑖 
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(2) 𝑅𝑇𝑇 =  
𝐷𝐹

𝐷𝑡
=
∂𝐹

∂𝑡
+ 𝑢 ⋅ ∇𝐹 =

∂𝐹

∂𝑡
+ 𝑢𝑖

∂𝐹

∂𝑥𝑖
  

for V*(t) = δV → 0 and 𝑏 = 𝑢 
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Relationship CV & material volume = mv 

(1) mv: 
𝑑

𝑑𝑡
∫ 𝐹(𝑥, 𝑡)
𝑉(𝑡)

 𝑑𝑉 = ∫
∂𝐹

∂𝑡𝑉(𝑡)
 𝑑𝑉 + ∫ 𝐹

𝐴∗
 𝑢 ⋅ 𝑛 𝑑𝐴 

V(t) = MV s(t) = MV boundary with local 𝑛  moving at 

nonuniform velocity 𝑢(x,t) 

Green’s theorem: ∫ ∇
𝑉

⋅ 𝑏 𝑑𝑉 = ∫ 𝑏
𝑆
⋅ 𝑛 𝑑𝐴 

𝑑

𝑑𝑡
∫ 𝐹
𝑀𝑉

 𝑑𝑉 = ∫ [
∂𝐹

∂𝑡
+ ∇ ⋅ (𝐹𝑢)]

𝑀𝑉

 𝑑𝑉 

lim
𝑀𝑉→0

𝑑

𝑑𝑡
∫ 𝐹
𝑀𝑉

 𝑑𝑉 =
∂𝐹

∂𝑡
+ ∇ ⋅ (𝐹𝑢) 

𝐹 = β𝜌 and LHS = 
𝑑𝐵𝑠𝑦𝑠

𝑑𝑡
 

(2) sssume at time t MV & CV coincide 

𝑑

𝑑𝑡
∫ 𝐹
𝑀𝑉

 𝑑𝑉 = ∫
∂𝐹

∂𝑡𝑉∗
 𝑑𝑉 + ∫ 𝐹

𝐴∗
 𝑢 ⋅ 𝑛 𝑑𝐴∗ 

However, from RTT: ∫
∂𝐹

∂𝑡𝑉∗
 𝑑𝑉 =

𝑑

𝑑𝑡
∫ 𝐹
𝑉∗

 𝑑𝑉 − ∫ 𝐹
𝐴∗

 𝑢𝑠 ⋅ 𝑛  𝑑𝐴
∗ 

Therefore: 
𝑑

𝑑𝑡
∫ 𝐹
𝑀𝑉

 𝑑𝑉 =
𝑑

𝑑𝑡
∫ 𝐹
𝑉∗

 𝑑𝑉 + ∫ 𝐹
𝐴∗

 (𝑢−𝑢𝑠)⏟      
𝑢𝑅

⋅ 

Provides relationship 
𝑑

𝑑𝑡
∫ 𝐹
𝑀𝑉

 𝑑𝑉  & RHS which 

represents equivalent change for CV 

 

𝑡 + Δ𝑡 
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spplication CV GDE 

𝐹 = β𝜌      β =
𝑑𝐵

𝑑𝑚
      𝐵 = ∫β  𝑑𝑚 = ∫ β𝜌𝑉

 𝑑𝑉  

𝑑𝐵𝑠𝑦𝑠

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑚,  𝑚𝑢,  𝐸) = RHS = (0,  ∑𝐹 , 𝑄̇ − 𝑊̇)  

𝑑𝐵𝑠𝑦𝑠

𝑑𝑡
=

𝑑

𝑑𝑡
∫ β𝜌
𝑀𝑉

 𝑑𝑉 =
𝑑

𝑑𝑡
∫ β𝜌
𝐶𝑉

 𝑑𝑉 + ∫ β𝜌
𝐶𝑆

 𝑢𝑅 ⋅ 𝑛 𝑑𝐴  

β = (1, 𝑢, e) and 𝑢𝑅 = 𝑢− 𝑢𝑐𝑠 

Specific CV cases depending on 𝑉𝑠(𝑥𝐶𝑆(𝑡), 𝑡).  

1) Deforming CV: 

 

(a) 𝑉𝑠 = 𝑉𝑠(𝑥𝐶𝑆(𝑡), 𝑡) non-uniform/accelerating 

velocity 

(b) 𝑉𝑠 = 𝑉𝑠(𝑥𝐶𝑆(𝑡)) uniform/constant velocity 

(steady moving) 

(c) ∫ 𝑉𝑠(𝑥𝐶𝑆(𝑡)) ∙ 𝑛𝑑𝐴 = 0𝐶𝑆
 as a whole at rest 

(stationary) 

 

2) Non deforming CV:  

 

(a) 𝑉𝑠 = 𝑉𝑠(𝑡) accelerating velocity 

(b) 𝑉𝑠 = constant velocity, i.e., relative inertial 

coordinates (steady moving) 

(c) 𝑉𝑠 = 0 at rest (stationary) 
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Next step: apply  = (1, 𝑢, e) 

I. Conservation of mass Bsys = m,  β = 1 

 

𝑑𝑚

𝑑𝑡
= 0 =

𝑑

𝑑𝑡
∫ ρ
𝑉∗

 𝑑𝑉 + ∫ ρ
𝐴∗
 𝑢𝑅 ⋅ 𝑛 𝑑𝐴 

−
𝑑

𝑑𝑡
∫ ρ
CV

 𝑑𝑉 = ∫ ρ
𝐶𝑆

  𝑢𝑅 ⋅ 𝑛 𝑑𝐴 

rate of decrease = net outflow 

i.e., deforming or non-deforming and 

each case either accelerating / steady moving / or 

stationary 

  

(1) most general case 

ρ(𝑥,t) and 𝑢𝑅 

𝑢 & 𝑢𝑠 = f(𝑥,t) 

(2) other specific cases 

depend on ρ ≠ f(t) or ρ ≠ f(𝑥) 

and form 𝑏(𝑥,t) as per RTT 

for V* 
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II. Conservation of momentum 

Bsys = m𝑢    β = 𝑢    CV=𝑉∗    CS=𝐴∗ 

𝑑𝐵𝑠𝑦𝑠

𝑑𝑡
=
𝑑

𝑑𝑡
(𝑚𝑢) =

𝑑

𝑑𝑡
∫ ρ𝑢
𝑉∗

 𝑑𝑉 + ∫ ρ𝑢
𝐴∗

 𝑢𝑟 ⋅ 𝑛 𝑑𝐴 

= ∫ 𝜌𝑔
𝑉∗

 𝑑𝑉
⏟      
body force

+∫ 𝑓(𝑛, 𝑥, 𝑡)
𝐴∗

 𝑑𝐴
⏟          

surface force

= RHS 

Here again: 1) most general case ρ = ρ(𝑥,t) and 𝑢 and 𝑢𝑠 

all f(𝑥,t) and other specific cases depend on different forms 

𝑏(𝑥,t) as per RTT for V*. 

Body force  𝜌𝑔 𝑑𝑉 acts on dV without physical contact and 

is conservative since (by definition) conservative body 

forces can be expressed as the gradient of a potential 

function. 

𝑔 = −∇Φ or 𝑔𝑖 = −
∂Φ

∂𝑥𝑖
 

                 Φ = |𝑔| z = gz 

           𝑔 = −𝑔 𝑧̂  

 

g=: m/s² 

e per unit m 

PE gz m²/s² 

KE = u²/2 

internal: 𝑢 ̂ 

Φ = force potential 

with units energy per 

unit mass 

𝑅𝐻𝑆 =∑𝐹 

act on d𝑉 𝑉∗ 
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Surface forces act on fluid elements via direct contact with 

the CS with units of stress N/m² and normal and tangential 

components. 

 

srbitrarily oriented d𝐴 with normal 𝑛 = 𝑛𝑖. 

Surface force 𝑓(𝑛, 𝑥,t) = 𝑓𝑖 = 𝑛𝑗 𝑇𝑖𝑗 per unit area. 

𝑓1 = 𝑛1𝑇11 + 𝑛2𝑇21 + 𝑛3𝑇31 𝑇𝑖𝑗  =  𝑠𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟 

𝑓2 = 𝑛1𝑇12 + 𝑛2𝑇22 + 𝑛3𝑇32  

𝑓3 = 𝑛1𝑇13 + 𝑛2𝑇23 + 𝑛3𝑇33  

Normal component = 𝑛 ⋅ 𝑓 = 𝑛𝑖𝑓𝑖 

Tangential component vector = 𝑓 − (𝑛 ⋅ 𝑓) 𝑛 

= 𝑓𝑘 − (𝑛𝑖𝑓𝑖)𝑛𝑘 

𝑛 ⋅ 𝑓 = 𝑛1𝑓1 + 𝑛2𝑓2 + 𝑛3𝑓3  
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Cubical element 

x-face: 𝑛 = (1,0,0) 

𝑓𝑥 = 𝑇11𝑖̂ + 𝑇12𝑗̂ + 𝑇13𝑘̂  

 

 

𝑛 ⋅ 𝑓𝑥 = 𝑇11 Tangential component 𝑓𝑡 = 𝑓𝑥 − 𝑇11 𝑖̂ 

                                                                     = 𝑇12𝑗̂ + 𝑇13𝑘̂ 

 

y-face: 𝑛 = (0,1,0) 

𝑓𝑦 = 𝑇21𝑖̂ + 𝑇22𝑗̂ + 𝑇23𝑘̂ 

 

 

z-face: 𝑛 = (0,0,1) 

𝑓𝑧 = 𝑇31𝑖̂ + 𝑇32𝑗̂ + 𝑇33𝑘̂  

  

𝑓1 = 𝑇11 

𝑓2 = 𝑇12 

𝑓3 = 𝑇13 

𝑓1 = 𝑇21 

𝑓2 = 𝑇22 

𝑓3 = 𝑇23 

𝑓1 = 𝑇31 

𝑓2 = 𝑇32 

𝑓3 = 𝑇33 
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Writing momentum equation for MV: 𝑢𝑟 = 0, V* = V, s* = s 

𝑑

𝑑𝑡
∫ρ𝑢
𝑉

 𝑑𝑉 = ∫
∂

∂𝑡
(ρ𝑢)

𝑉

 𝑑𝑉 + ∫ρ𝑢 𝑢 ⋅ 𝑛
𝐴

 𝑑𝐴 

= ∫ ρ𝑔
𝑉

 𝑑𝑉 + ∫ 𝑓
𝐴

 𝑑𝐴 

∫ ρ𝑢 𝑢 ⋅ 𝑛
𝐴

 𝑑𝐴 = ∫ ∇
𝑉

⋅ (ρ𝑢 𝑢) 𝑑𝑉 =  ∫
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗)𝑉

 𝑑𝑉  

∫ 𝑓
𝐴
 𝑑𝐴 = ∫ 𝑛𝑖𝑇𝑖𝑗𝐴

 𝑑𝐴 = ∫
∂𝑇𝑖𝑗

∂𝑥𝑗𝑉
 𝑑𝑉  

∫ [
∂

∂𝑡
(ρ𝑢𝑖) +

∂

∂𝑥𝑗
(ρ𝑢𝑖𝑢𝑗) − ρ𝑔𝑖 −

∂

∂𝑥𝑗
(𝑇𝑖𝑗)]

𝑉

 𝑑𝑉 = 0 

lim
𝑑𝑉→0

:   
∂

∂𝑡
(ρ𝑢𝑖) +

∂

∂𝑥𝑗
(ρ𝑢𝑖𝑢𝑗) = ρ𝑔𝑖 +

∂

∂𝑥𝑗
(𝑇𝑖𝑗) 

∂

∂𝑡
(ρ𝑢𝑖) +

∂

∂𝑥𝑗
(ρ𝑢𝑖𝑢𝑗) =

∂ρ

∂𝑡
𝑢𝑖 + ρ

∂𝑢𝑖
∂𝑡
+ 𝑢𝑖

∂

∂𝑥𝑗
(ρ𝑢𝑗) + ρ𝑢𝑗

∂𝑢𝑖
∂𝑥𝑗

 

                                                 = ρ
∂𝑢𝑖

∂𝑡
+ 𝑢𝑖 [

∂ρ

∂𝑡
+

∂

∂𝑥𝑗
(ρ𝑢𝑗)]  +  𝜌𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
 

                            = 0 continuity 

                                                  = ρ
∂𝑢𝑖

∂𝑡
+ ρ𝑢𝑗

∂𝑢𝑖

∂𝑥𝑗
= ρ

𝐷𝑢𝑖

𝐷𝑡
 

ρ
𝐷𝑢𝑖

𝐷𝑡
= ρ𝑔𝑖 +

∂

∂𝑥𝑗
(𝑇𝑖𝑗) Cauchy equation of motion 

Unknowns: ρ, ui, Tij = 1 + 3 + 9 = 13 need stress–strain 

relationship 

Equations: 1 + 3 + 2 = 6  

 Thermodynamic equations (, p) 
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Inner Product 

𝑢 ⋅ 𝑣   𝑢𝑖𝑣𝑖   𝑈
𝑇𝑉   𝑈𝑇 = [𝑢1 𝑢2 𝑢3] [

𝑢1
𝑢2
𝑢3
]  

 

𝐴 =  1 ×  3    𝐵 =  3 ×  1    𝐶 =  1 ×  1  

 

𝑐𝑖𝑗 =∑𝑎𝑖𝑘𝑏𝑘𝑗

𝑛=3

𝑘=1

  𝑖 = 1,𝑚 = 1  𝑗 = 1, 𝑝 = 1 = 𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 

= 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3 

Vector Product 

𝑢 ⋅ 𝑣     𝑢𝑖𝑣𝑗       𝑈 𝑉
𝑇    [

𝑢1
𝑢2
𝑢3
] [𝑢1 𝑢2 𝑢3] 

 

 

𝑐𝑖𝑗 = ∑ 𝑎𝑖1𝑏1𝑗
𝑛=1
𝑘=1  𝑖 = 1,3 𝑗 = 1,3  

 

𝑎11𝑏11 𝑎11𝑏12 𝑎11𝑏13   𝑢1𝑣1 𝑢1𝑣2 𝑢1𝑣3 

 𝑎21𝑏11 𝑎21𝑏12 𝑎21𝑏13  𝑢2𝑣1 𝑢2𝑣2 𝑢2𝑣3 

𝑎31𝑏11 𝑎31𝑏12 𝑎31𝑏13  𝑢3𝑣1 𝑢3𝑣2 𝑢3𝑣3 

row x column 

1 × 3 

 

 

 

𝑉 = 1st order tensor 

(column matrix) 

m        n 

 

 

 

n         p 

 

 

 

m        p 

 

 

 

uᵀv = 1×1 = 0 order tensor 

 

 

3 × 1      1 × 3   =   3 × 3 

 

 

m    n 

 

 

 

n    p 

 

 

 

m    p 
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Consider the equation for Newtonian fluid 

 

Stress at a point fully described by Tij: 9 components 

However, 

𝑇𝑖𝑗 = 𝑇𝑗𝑖 

is symmetric such that only six independent components; 

since, the stresses themselves cause no rotation, which is 

shown by considering the differential equation of angular 

momentum for limit 𝑑𝑉 = 𝑑𝑥1 𝑑𝑥2 𝑑𝑥3 → 0 assuming no 

external body force moments ∝ ρ such as electric field or 

polarized fluid molecules. 

𝑇𝑖𝑗 = 𝑓(𝑢𝑖𝑗) = constitutive equation 

                      =∝ 𝑢𝑖𝑗 Newtonian fluid 
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Next, we need to relate the stresses σij to the fluid motion, 

i.e., the velocity field.  To this end, we examine the relative 

motion between two neighboring fluid particles. 

 

  

 

 

 

@ B: V dV V V dr+ = +   1st order Taylor Series 

 

𝑢𝑏 = 𝑢𝑎 + 𝑢𝑥  𝑑𝑥 + 𝑢𝑦  𝑑𝑦 + 𝑢𝑧  𝑑𝑧 + 𝑢𝑥𝑥
𝑑𝑥2

2
+ ⋯ 

𝑣𝑏 = 𝑣𝑎 + 𝑣𝑥  𝑑𝑥 + 𝑣𝑦  𝑑𝑦 + 𝑣𝑧  𝑑𝑧 + 𝑣𝑥𝑥
𝑑𝑥2

2
+ ⋯ 

 𝑤𝑏 = 𝑤𝑎 + 𝑤𝑥  𝑑𝑥 + 𝑤𝑦  𝑑𝑦 + 𝑤𝑧  𝑑𝑧 + 𝑤𝑥𝑥
𝑑𝑥2

2
+ ⋯ 

 
 

𝑑𝑉 = (uB-uA, vB-vA, wB-wA) 
 

x y z

x y z ij j

x y z

u u u dx

dV V dr v v v dy e dx

w w w dz

   
   

=   = =   
     

 

 

 

B 

relative motion deformation rate 

tensor = 
ij

e  

dr  

𝑑𝑉 = 𝑑𝑉𝑖 = (𝑑𝑉1, 𝑑𝑉2, 𝑑𝑉3) 

A (u,v,w) = V 
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𝑒𝑖𝑗 =
𝜕𝑢𝑖
𝜕𝑥𝑗

=
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)

⏟        
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑎𝑟𝑡
𝜀𝑖𝑗=𝜀𝑗𝑖

+
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
)

⏟        
𝑎𝑛𝑡𝑖−𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑎𝑟𝑡
𝜔𝑖𝑗=−𝜔𝑗𝑖

= 𝜀𝑖𝑗 +𝜔𝑖𝑗 

 

1 1
0 ( ) ( )

2 2

1 1
( ) 0 ( )

2 2

1 1
( ) ( ) 0

2 2

y x z x

ij x y z y

x z y z

u v u w

v u v w rigid body rotation
of fluid element

w u w v









 
 
 
 

− − 
 
 = − − =
 
 
 
 

− − 
 
  

  

 

where = rotation about x axis 

 = rotation about y axis 

ς= rotation about z axis 

 

Note that the components of ij are related to the vorticity 

vector defined by: 

 
ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )

2 22

y z z x x y x y zV w v i u w j v u k i j k   

 

=  = − + − + − = + +
 

= 2  angular velocity of fluid element 
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1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

ij

x y x z x

x y y z y

x z y z z

rate of strain tensor

u u v u w

v u v v w

w u w v w

 =

 
+ + 

 
 = + +
 
 
 + +
  

 

 

x y zu v w V+ + = = elongation (or volumetric dilatation)  

of fluid element 
1 D

Dt


=


 

)(
2

1
xy

vu +  = distortion wrt (x,y) plane 

)(
2

1
xz

wu +  = distortion wrt (x,z) plane 

)(
2

1
yz

wv +  = distortion wrt (y,z) plane 

 

Thus, general motion consists of: 

 

1) pure translation described by V  

2) rigid-body rotation described by ω 

3) volumetric dilatation described by V  

4) distortion in shape described by ij  i j 
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It is now necessary to make certain postulates concerning 

the relationship between the fluid stress tensor (σij) and 

rate-of-deformation tensor (eij).  These postulates are based 

on physical reasoning and experimental observations and 

have been verified experimentally even for extreme 

conditions. For a Newtonian fluid: 

 

1) When the fluid is at rest the stress is hydrostatic, and 

the pressure is the thermodynamic pressure 

 

2) Since there is no shearing action in rigid body 

rotation, it causes no shear stress. 

 

3) ij is linearly related to ij and only depends on ij. 

 

4) There is no preferred direction in the fluid, so that the 

fluid properties are point functions (condition of 

isotropy). 
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Using statements 1-3 
 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝑘𝑖𝑗𝑚𝑛𝜀𝑚𝑛        𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

 

kijmn = 4th order tensor with 81 components (3x3x3x3) such 

that each stress is linearly related to all nine components of 

εmn. 
 

However, statement (4) requires that the fluid has no 

directional preference, i.e., σij is independent of rotation of 

the coordinate system, which means kijmn is an isotropic 

tensor = 4th order tensor made up of products of δij. 
 

𝑘𝑖𝑗𝑚𝑛 = 𝜆𝛿𝑖𝑗𝛿𝑚𝑛 + 𝜇𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛾𝛿𝑖𝑛𝛿𝑗𝑚 
 

scalars=),,(   
 

Lastly, the symmetry condition σij = σji requires: 
 

𝑘𝑖𝑗𝑚𝑛 = 𝑘𝑗𝑖𝑚𝑛 
 

𝑘𝑖𝑗𝑚𝑛 = 𝜆𝛿𝑖𝑗𝛿𝑚𝑛 + 𝜇𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛾𝛿𝑖𝑛𝛿𝑗𝑚 

𝑘𝑗𝑖𝑚𝑛 = 𝜆𝛿𝑗𝑖𝛿𝑚𝑛 + 𝜇𝛿𝑗𝑚𝛿𝑖𝑛 + 𝛾𝛿𝑗𝑛𝛿𝑖𝑚 

 

Equating the two: 
 

𝜆𝛿𝑖𝑗𝛿𝑚𝑛 + 𝜇𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛾𝛿𝑖𝑛𝛿𝑗𝑚
=  𝜆𝛿𝑗𝑖𝛿𝑚𝑛 + 𝜇𝛿𝑗𝑚𝛿𝑖𝑛 + 𝛾𝛿𝑗𝑛𝛿𝑖𝑚 
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𝜆𝛿𝑚𝑛(𝛿𝑖𝑗 − 𝛿𝑗𝑖) +  𝜇(𝛿𝑖𝑚𝛿𝑗𝑛 − 𝛿𝑗𝑚𝛿𝑖𝑛)

+  𝛾(𝛿𝑖𝑛𝛿𝑗𝑚 − 𝛿𝑗𝑛𝛿𝑖𝑚) = 0 

 

The first term is zero since 𝛿𝑖𝑗 = 𝛿𝑗𝑖, therefore: 

 

𝜇(𝛿𝑖𝑚𝛿𝑗𝑛 − 𝛿𝑗𝑚𝛿𝑖𝑛) +  𝛾(𝛿𝑖𝑛𝛿𝑗𝑚 − 𝛿𝑗𝑛𝛿𝑖𝑚) = 0 

 

If 𝑖 = 𝑚 and 𝑗 = 𝑛: 
 

𝜇(1 − 𝛿𝑛𝑚𝛿𝑚𝑛) −  𝛾(1 − 𝛿𝑚𝑛𝛿𝑛𝑚) = 0 

 

If 𝑗 = 𝑚 and 𝑖 = 𝑛: 
 

𝜇(𝛿𝑛𝑚𝛿𝑚𝑛 − 1) −  𝛾(𝛿𝑚𝑛𝛿𝑛𝑚 − 1) = 0 

 

i.e., 

𝜇 = 𝛾 = viscosity 

 

The stress tensor can be written as: 
 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇𝛿𝑖𝑚𝛿𝑗𝑛𝜀𝑚𝑛 + 𝜇𝛿𝑖𝑛𝛿𝑗𝑚𝜀𝑚𝑛 + 𝜆𝛿𝑖𝑗𝛿𝑚𝑛𝜀𝑚𝑛  

 
Take 𝜇𝛿𝑖𝑚𝛿𝑗𝑛𝜀𝑚𝑛 → 𝛿𝑖𝑚 ≠ 0  if 𝑚 = 𝑖  and 𝛿𝑗𝑛 ≠ 0  if 𝑛 =

𝑗 → equivalent to 𝜇𝜀𝑖𝑗. Similar reasoning for other terms: 
 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 + 𝜆 𝜀𝑚𝑚⏟
𝛻⋅𝑉

𝛿𝑖𝑗  
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λ and μ can be further related if one considers mean normal 

stress vs. thermodynamic p. 

 

3 (2 3 )ii p V  = − + +   
1 2

3 3
iip V

p mean
normal stress

  
 

= − + +   
 

=

 

 
2

3
p p V 

 
− = +   

 
 

 

Incompressible flow: pp =   and absolute pressure is 

indeterminant since there is no equation of state for p.  

Equations of motion determine p . 

 

Compressible flow:  pp   and λ = bulk viscosity which 

must be determined; however, it is a very difficult 

measurement requiring large 
1 1D D

V
Dt Dt






 = − =


, e.g., 

within shock waves. 

 

Stokes Hypothesis also supported kinetic theory monotonic 

gas. 

pp =

−= 
3

2
 

 

𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧 = 
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𝜎𝑖𝑗 = −(𝑝 +
2

3
𝜇𝛻 ⋅ 𝑉) 𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗 

 

 

𝜏𝑖𝑗 = 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) ji   relates shear stress to strain rate 

 

Generalization 
dy

du
 =   for 3D flow.  

 

𝜎𝑖𝑖 = −𝑝 −
2

3
𝜇𝛻 ⋅ 𝑉 + 2𝜇 (

𝜕𝑢𝑖
𝜕𝑥𝑖
) = −𝑝 + 2𝜇 [−

1

3
𝛻 ⋅ 𝑉 +

𝜕𝑢𝑖
𝜕𝑥𝑖
]

⏟            
𝑛𝑜𝑟𝑚𝑎𝑙 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑠𝑡𝑟𝑒𝑠𝑠

 

 

Where the normal viscous stress is the difference between 

the extension rate in the xi direction and average expansion 

at a point.  Only differences from the average = 
1

3
(
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
)  generate normal viscous stresses.  For 

incompressible fluids, average = 0 i.e., 𝛻 ⋅ 𝑉 = 0. 
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Non-Newtonian fluids: 

𝜏𝑖𝑗 ∝ 𝜀𝑖𝑗 for small strain rates 


 , which works well 

for air, water, etc. Newtonian fluids 

 

𝜏𝑖𝑗 ∝ 𝜀𝑖𝑗
𝑛
⏟

𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟

+
𝜕

𝜕𝑡
𝜀𝑖𝑗⏟

ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑒𝑓𝑓𝑒𝑐𝑡

  Non-Newtonian 

                  Viscoelastic materials 

Non-Newtonian fluids include: 

 

(1) Polymer molecules with large molecular 

weights and form long chains coiled together 

in spongy ball shapes that deform under shear. 

  

(2) Emulsions and slurries containing suspended 

particles such as blood and water/clay. 
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Navier Stokes Equations: 

 

𝜌𝑎 = 𝜌
𝐷𝑉

𝐷𝑡
= −𝜌𝑔𝑘̂ + 𝛻 ⋅ 𝜎𝑖𝑗 

 

𝜌
𝐷𝑉

𝐷𝑡
= −𝜌𝑔𝑘̂ − 𝛻𝑝 +

𝜕

𝜕𝑥𝑗
[2𝜇𝜀𝑖𝑗 −

2

3
𝜇𝛻 ⋅ 𝑉𝛿𝑖𝑗] 

 

Recall μ = μ(T) and μ increases with T for gases, decreases 

with T for liquids, but if it is assumed that μ = constant: 

 

𝜌
𝐷𝑉

𝐷𝑡
= −𝜌𝑔𝑘̂ − 𝛻𝑝 + 2𝜇

𝜕

𝜕𝑥𝑗
𝜀𝑖𝑗 −

2

3
𝜇
𝜕

𝜕𝑥𝑗
𝛻 ⋅ 𝑉 

 

2
𝜕

𝜕𝑥𝑗
𝜀𝑖𝑗 =

𝜕

𝜕𝑥𝑗
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) =

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

= 𝛻2𝑢𝑖 = 𝛻
2𝑉 

𝜌
𝐷𝑉

𝐷𝑡
= −𝜌𝑔 𝑘̂ − 𝛻𝑝 + 𝜇 [𝛻2𝑉 −

2

3

𝜕

𝜕𝑥𝑗
𝛻 ⋅ 𝑉] 

For incompressible flow 𝛻 ⋅ 𝑉 = 0 

 

𝜌
𝐷𝑉

𝐷𝑡
= −𝜌𝑔𝑘̂ − 𝛻𝑝⏟      
−𝛻𝑝 𝑤ℎ𝑒𝑟𝑒 𝑝=𝑝+𝛾𝑧
𝑝𝑖𝑒𝑧𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

+ 𝜇𝛻2𝑉 

For μ = 0 

𝜌
𝐷𝑉

𝐷𝑡
= −𝜌𝑔 𝑘̂ − 𝛻𝑝  Euler Equation 
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NS equations for ρ, μ constant 

 

𝜌
𝐷𝑉

𝐷𝑡
= −𝛻𝑝̂ + 𝜇𝛻2𝑉 

𝜌 [
𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ 𝛻𝑉] = −𝛻𝑝̂ + 𝜇𝛻2𝑉 

[
𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ 𝛻𝑉] = −

1

𝜌
𝛻𝑝̂ + 𝜈𝛻2𝑉    𝜈 =

𝜇

𝜌
 kinematic 

viscosity/ 

                                                diffusion coefficient 

 
Non-linear 2nd order PDE, as is the case for ρ, μ not constant. 

 

Combine with 𝛻 ⋅ 𝑉 for 4 equations for 4 unknowns 𝑉, p 

and can be, albeit difficult, solved subject to initial and 

boundary conditions for 𝑉, p at t = t0 and on all boundaries 

i.e. “well posed” IBVP. 

Summary GDE for compressible non-constant property 

fluid flow 

Continuity: ( ) 0V
t





+ =

  

 

Momentum: 𝜌
𝐷𝑉

𝐷𝑡
= 𝜌𝑔 − ∇𝑝 + ∇ ∙ 𝜎𝑖𝑗 

 

   𝜎𝑖𝑗 = 2𝜇𝜖𝑖𝑗 + 𝜆∇ ∙ 𝑉𝛿𝑖𝑗 

 

𝑔 = −𝑔𝑘̂ 
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Energy ++= )( Tk
Dt

Dp

Dt

Dh
  

 

Primary variables: p, V, T 

 

Auxiliary relations:  ρ = ρ (p,T)  μ = μ (p,T) 

(equations of state)   h = h (p,T)  k = k (p,T) 

 

Restrictive Assumptions: 

1) Continuum 

2) Newtonian fluids 

3) Thermodynamic equilibrium 

4) 𝑔 = −𝑔𝑘̂ 

5) heat conduction follows Fourier’s law. 

6) no internal heat sources. 

For incompressible constant property fluid flow 

 
ˆ

vdu c dT=   cv, μ, k, ρ ~ constant 

 

+= Tk
Dt

DT
c

v

2  

 

For static fluid or V small 

 

Tk
t

T
c

p

2=



  heat conduction equation (also valid for solids) 
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Summary GDE for incompressible constant property fluid 

flow (cv ~ cp) 

 

0V =   

 

2ˆDV
gk p V

Dt
  = − − +    “elliptic” 

+= Tk
Dt

DT
c

p

2   where 𝛷 = 𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
 

 

Continuity and momentum uncoupled from energy; 

therefore, solve separately and use solution post facto to 

get T. 

 

For compressible flow, ρ solved from continuity equation, 

T from energy equation, and p = (ρ, T) from equation of 

state (e.g., ideal gas law).  For incompressible flow, ρ = 

constant and T uncoupled from continuity and momentum 

equations, the latter of which contains p  such that 

reference p is arbitrary and specified post facto (i.e., for 

incompressible flow, there is no connection between p and 

ρ).  The connection is between p  and 0V = , i.e., a 

solution for p requires 0V = . 
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NS: 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 

𝜌 (
𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗
) = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗
2  

)(NS : 

  ∇ ∙ [
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉 = −∇(

𝑝

𝜌
) + 𝜈∇2𝑉] 

∇ ∙ (
𝜕𝑉

𝜕𝑡
− 𝜈∇2𝑉) + ∇ ∙ (𝑉 ∙ ∇𝑉) = −∇2 (

𝑝

𝜌
) 

(
𝜕

𝜕𝑡
− 𝜈∇2) ∇ ∙ 𝑉 + ∇ ∙ (𝑉 ∙ ∇𝑉) = −∇2 (

𝑝

𝜌
) 

𝑉 ∙ ∇𝑉 = 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

 

∇ ∙ (𝑉 ∙ ∇𝑉) =
𝜕

𝜕𝑥𝑖
(𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗
) =

𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝑢𝑗
𝜕

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

 

 

∇ ∙ (𝑉 ∙ ∇𝑉) =
𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

 

(
𝜕

𝜕𝑡
− 𝜈𝛻2)𝛻 ⋅ 𝑉 = −

1

𝜌
𝛻2𝑝 −

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 

 

For 𝛻 ⋅ 𝑉 = 0:  𝛻2𝑝 = −𝜌
𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 

Poisson equation determines pressure up to additive 

constant. 
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Approximate Models: 

 

1) Stokes Flow 
  

 For low Re 1, ~ 0
UL

V V


=    

 

 0V =  
21V

p V
t





= −  + 


 

 
0)( 2 = pNS  

 

2)  Boundary Layer Equations 

 

For high Re >> 1 and attached boundary layers or fully 

developed free shear flows (wakes, jets, mixing layers), 

v<<U, 
yx 







, 0=

y
p , and for free shear flow px = 0.   

 
 0=+

yx
vu  

 ˆ
t x y x yyu uu vu p u+ + = − +  non-linear, “parabolic” 

 

0

ˆ

y

x t x

p

p U UU

=

− = +  

 

Many exact solutions; similarity methods 

 

 

Linear, “elliptic” 

Most exact solutions NS; and for steady 
flow superposition, elemental solutions, 
and separation of variables 
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3)  Inviscid Flow 

 

( ) 0

, ," "

( ) , , , , ( , )

V
t

DV
g p Euler Equation nonlinear hyperbolic

Dt

Dh Dp
k T p V T unknowns and h k f p T

Dt Dt




 

 


+ =



= −

= +  =

 

4)  Inviscid, Incompressible, Irrotational 

 

∇ × 𝑉 = 0 → 𝑉 = ∇𝜑 

∇ ∙ 𝑉 = 0 → ∇2𝜑 = 0   𝑙𝑖𝑛𝑒𝑎𝑟 elliptic 
 

  Euler Equation →  Bernoulli Equation: 

 

2

2
p V gz const


+ + =  

 

Many elegant solutions:  Laplace equation using 

superposition elementary solutions, separation of 

variables, complex variables for 2D, and Boundary 

Element methods. 


