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FIGURE 11.16 Geometry of the flow and the instability in rotating Couette flow. The fluid resides between
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As the coefficients in these equations depend only on R, the equations admit solutions
that depend on z and ¢ exponentially. We therefore consider normal mode solutions of
the form:

(R, U, U, p) = (4R(R), By(R), ﬁz(R),ﬁ(R))exp{ikz + ot}

The requirement that the solutions remain bounded as z — t+ implies that the axial wave
number k must be real. After substituting the normal modes into (11.50) and eliminating 7,
and p, we get a coupled system of equations in #ig and 7. Under the narrow-gap approximation,
for which d = R, — R; is much smaller than (R1 + R)/2, these equations finally become (see
Chandrasekhar, 1961 for details):

(d2/dR2 . o) (d*/dR? — B¥)ig = (1+ ax)i,, and (P/dR* =12 — o), = —Tak?7ig, (L€

where:
O!E(Qz/ﬂl)-—l, XE(R—Rl)/d, dER2~R1,

and Ta is the Taylor number:

QR — Q,R2\ Q¢
Ta54( IR%_R%Z 2) ;2 : (11.52;

It is the ratio of the centrifugal force to viscous force, and equals 2(Q1R14/v)*(d/R1) when only
the inner cylinder is rotating and the gap is narrow.
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D O i = dlg/dR = T, =0 at x=0 and x=1 (11.53)
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Figure 25.15  Stability chart for Taylor vortex behavior. Reprinted with permission from Andereck
etal. (1986). '
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~ Figure 25.16 (a) Wavy Taylor vortices. Reprinted with permission from Koschmieder (1979). () Braided Taylor vortices. From Andereck et al.
(1983). (c) Turbulent Taylor vortices. Courtesy of Zhang and Swinney (1985), University of Texas. Reprinted with permission.
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FIGURE 11.17 Taylor’s observation and narrow-gap calculation of marginal stability in rotating Couette flow of
water. The ratio of radii is R,/ Ry = 1.14. The region above the curve is unstable. The dashed line represents Rayleigh’s
inviscid criterion, with the region to the left of the line representing instability. The experimental and theoretical
results agree well and suggest that viscosity acts to stabilize the flow.



