Chapter 9: Boundary Layer Flows (Chapter 7.3 Pope)

Part 2: Length scales and the mixing length

Three fundamental properties of the log law region:

1)
$$S = \langle U \rangle_y = u_\tau / ky$$
 or $\frac{du^+}{dy^+} = \frac{1}{ky^+}$

- 2) $P/\varepsilon \approx 1$
- 3) $-\langle uv \rangle/k \sim 0.3$

A fourth property that follows is:

4)

$$\frac{Sk}{\varepsilon} = \left| \frac{k}{\langle uv \rangle} \right| \frac{P}{\varepsilon} \approx 3$$

i.e., near constancy of turbulence to mean shear timescale ratio.

Turbulence length scale $L = k^{3/2}/\varepsilon$ varies as

$$L = ky \frac{|\langle uv \rangle|^{\frac{1}{2}}}{u_{\tau}} \left(\frac{P}{\varepsilon}\right) \left|\frac{\langle uv \rangle}{k}\right|^{-3/2}$$

For high Re, in overlap region ($50\delta_{\nu} < y < 0.1\delta$), RS almost constant, such that

$$L = C_L y$$

With

$$C_L \approx k \left(\frac{P}{\varepsilon}\right) \left|\frac{\langle uv \rangle}{k}\right|^{-\frac{3}{2}} \approx 2.5$$

Notice that $S, P, \varepsilon \propto y^{-1}$, whereas L and $\tau = k/\varepsilon \propto y$.

Recall definition of turbulent viscosity:

$$-\langle uv\rangle = \nu_t \frac{d\langle U\rangle}{dy}$$

$$\nu_t = u^* l_m = f(y)$$

One between u^* and l_m can be specified at will, for example:

$$u^* = |\langle uv \rangle|^{1/2}$$
$$\to u^* = l_m \frac{d\langle U \rangle}{dy}$$

In the overlap region

$$-\langle uv \rangle \approx u_{\tau}^2$$

And

$$\frac{d\langle U\rangle}{dy} = \frac{u_{\tau}}{ky}$$

Consequently,

$$u^* = u_{\tau} \rightarrow l_m = ky$$

In summary, this represents Prandtl's mixing-length hypothesis:

$$\nu_t = u^* l_m = l_m^2 \left| \frac{d\langle U \rangle}{dy} \right|$$

Eddy viscosity and mixing length

Analogy stress/strain momentum exchange laminar and turbulent flow:

$$\frac{\tau_{lam}}{\rho} = \nu \frac{\partial U}{\partial y}$$

$$\nu = \text{fluid property}$$

$$= a\lambda$$

For gas due molecular motions for which kinetic theory gives $a={\rm rms}$ speed molecular motion, $\lambda={\rm mean}$ free path, i.e., average distance travelled between collisions.

Analogy:

$$\frac{\tau_{turb}}{\rho} = -\overline{u}\overline{v} = v_t \frac{\partial U}{\partial y}$$

Where $v_t = \text{eddy viscosity} = f(flow)$.

Gross approximation $l \propto$ large scale eddies.

Free shear flows: $l_m = c\delta$, with c = f (mixing layer, jet, wake).

BL: $l_m = ky$, eddy size $\propto y$.

Prandtl: $u^* = \sqrt{\tau_w/\rho}$

$$v_t = u'l_m$$

 $u' = \operatorname{scale} u_{rms} = \operatorname{order} U \operatorname{or} u^*$

 $l_m = mixing length$

$$\begin{split} \nu_t &= k u^* y \\ \tau_{turb} &= \rho u^{*2} = \rho k u^* y \frac{\partial U}{\partial y} \\ \frac{\partial U}{\partial y} &= \frac{u^*}{k y} \to u^+ = \frac{U}{u^*} = \frac{1}{k} \log y + B \end{split}$$

Mixing length model (Kundu et al.)

$$\mathcal{R}_{ij} = \overline{u_i u_j} = \frac{2}{3} k \delta_{ij} - \nu_t \left(\overline{U_{i,j}} + \overline{U_{j,i}} \right)$$

$$v_t = l_t u_t$$

Characteristic length and time scales for turbulence in analogy to molecular theory,

$$\nu = a\lambda$$

a = rms speed molecular motion, $\lambda = \text{mean}$ free path.

 $l_t = \text{mixing length}, u_t = \text{velocity fluctuations}$

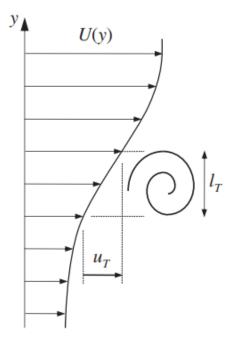


FIGURE 12.20 Schematic drawing of an eddy of size l_T in a shear flow with mean velocity profile U(y). A velocity fluctuation, u or v, that might be produced by this eddy must be of order $l_T(dU/dy)$. Therefore, we expect that the Reynolds shear stress will scale like $\overline{uv} \sim l_T^2 (dU/dy)^2$.

$$\omega_z = -U_v$$

Turn over time $= |\omega_z^{-1}|$

$$u_t = \frac{l_t}{|\omega_z^{-1}|} = l_t U_y$$

Eddy size l_t driven by $U_y \rightarrow u_t = l_t U_y$.

$$-\overline{uv} = v_t U_y = l_t u_t U_y = l_t^2 U_y^2$$

For wall-bounded flow, assume $l_t \propto y \rightarrow l_t = ky$ such that streamwise momentum equation becomes:

$$0 = -\frac{1}{\rho} \frac{dP}{dx} + \frac{\partial}{\partial y} \left(v \frac{\partial U}{\partial y} - \overline{u} \overline{v} \right)$$
$$0 = -\frac{1}{\rho} \frac{dP}{dx} + \frac{\partial}{\partial y} \left(v \frac{\partial U}{\partial y} + k^2 y^2 \left(\frac{dU}{dy} \right)^2 \right)$$

Assuming negligible pressure gradient and integrating once:

$$v \frac{\partial U}{\partial y} + k^2 y^2 \left(\frac{dU}{dy}\right)^2 = \text{const.} = \frac{\tau_w}{\rho}$$

Where the last equality is obtained from evaluation of the expression on the left at y=0.

For $y^+ > 50$ (outside viscous sublayer) $\nu \frac{\partial U}{\partial y} \ll k^2 y^2 \left(\frac{dU}{dy}\right)^2$ and solution of differential equation is:

$$\frac{dU}{dy} \approx \sqrt{\frac{\tau_w}{\rho}} \frac{1}{ky}$$

Or equivalently

$$\frac{U}{u^*} \approx \frac{1}{k} \log y + B$$