
Viscous Flow in Ducts

Laminar Flow Solutions

Entrance, developing, and fully developed flow

$$Le = f (D, V, \rho, \mu)$$

$$\Pi_{i} \text{ theorem} \rightarrow \frac{L_{e}}{D} = f (Re) \text{ f(Re) from AFD and EFD}$$

Laminar Flow: Re_{crit} ~ 2000

Re < Re_{crit} laminar

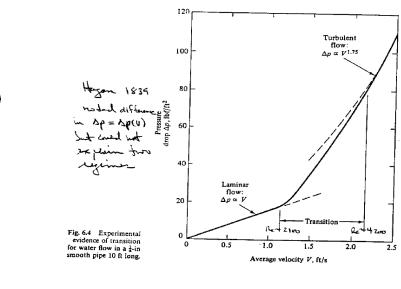
 $L_{c}/D \cong .06$ Re

 $Re > Re_{crit} \quad \ unstable$

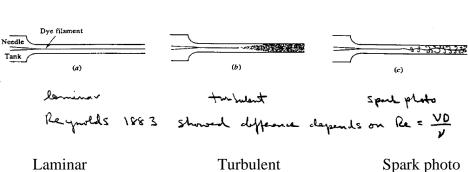
 $L_{emax} = .06 \text{Re}_{crit} D \sim 138 D$

 $Re > Re_{trans}$ turbulent

Max Le for laminar flow


Turbulent flow:

Re	L _e /D
4000	18
10^{4}	20
10^{5}	30
10^{6}	44
107	65
108	95


$$L_{e}/D \sim 4.4 \,\mathrm{Re}^{1/6}$$

(Relatively shorter than for laminar flow)

Laminar vs. Turbulent Flow

Hagen 1839 noted difference in $\Delta p = \Delta p(u)$ but could not explain two regimes

Reynolds 1883 showed that the difference depends on Re = VD/v

Laminar pipe flow:

1. CV Analysis

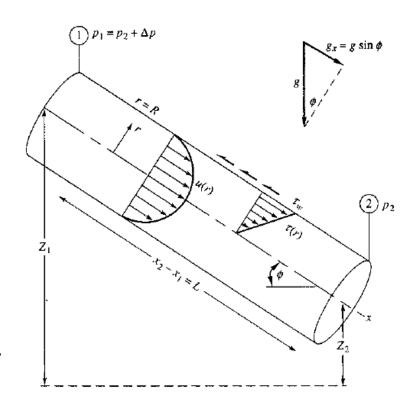


Fig. 6.7 Control volume of steady, fully developed flow between two sections in an inclined pipe.

Continuity:

$$0 = \int_{CS} \rho \underline{V} \cdot \underline{dA} \rightarrow \rho Q_1 = \rho Q_2 = const.$$

i.e.
$$V_1 = V_2$$
 $\sin ce$ $A_1 = A_2$, $\rho = const.$, and $V = V_{ave}$

Momentum:

WIGHTERIUM.
$$\Sigma F_x = \underbrace{(p_1 - p_2)}_{\Delta p} \pi R^2 - \tau_w 2\pi R L + \underbrace{\gamma \pi R^2 L}_{W} \underbrace{\sin \phi}_{\Delta z/L} = \underbrace{\dot{m}(\beta_2 V_2 - \beta_1 V_1)}_{=0}$$

$$\Delta p \pi R^2 - \tau_w 2\pi R L + \gamma \pi R^2 \Delta z = 0$$

$$\Delta p + \gamma \Delta z = \frac{2\tau_w L}{R}$$

$$\Delta h = h_1 - h_2 = \Delta(p/\gamma + z) = \frac{2\tau_w}{\gamma} \frac{L}{R}$$

or

$$\tau_w = \frac{R\gamma}{2} \frac{\Delta h}{L} = -\frac{R\gamma}{2} \frac{dh}{dx} = -\frac{R}{2} \frac{d}{dx} (p + \gamma z)$$

For fluid particle control volume:

$$\tau = -\frac{r}{2}\frac{d}{dx}(p + \gamma z)$$

i.e., shear stress varies linearly in r across pipe, which is valid for either laminar or turbulent flow.

Energy:

$$\frac{p_1}{\gamma} + \frac{\alpha_1}{2g}V_1 + z_1 = \frac{p_2}{\gamma} + \frac{\alpha_2}{2g}V_2 + z_2 + h_L$$

$$\Delta h = h_{_{L}} = \frac{2\tau_{_{W}}}{\gamma} \frac{L}{R}$$

 \therefore once τ_w is known, we can determine piezometric pressure $\hat{p} = p + \gamma z$ drop, i.e., $\frac{d}{dx}(p + \gamma z)$.

In general,

$$au_{_{\scriptscriptstyle{w}}} = au_{_{\scriptscriptstyle{w}}}(
ho, V, \mu, D, arepsilon)$$
 roughness

Π Theorem

$$\frac{8\tau_w}{\rho V^2} = f = friction \ factor = f(\text{Re}_D, \varepsilon/D)$$

where
$$\operatorname{Re}_D = \frac{VD}{v}$$

$$\Delta h = h_L = f \frac{L}{D} \frac{V^2}{2g}$$
 Darcy-Weisbach Equation

 $f(Re_D, \varepsilon/D)$ still needs to be determined. For laminar flow, there is an exact solution for f since laminar pipe flow has an exact solution. For turbulent flow, approximate solution for f using log-law as per Moody diagram and discussed later.

2. Differential Analysis

Continuity:

$$\nabla \cdot \underline{V} = 0$$
 $\nabla = \frac{\partial}{\partial r} + \frac{1}{r} \frac{\partial}{\partial \theta} + \frac{\partial}{\partial z}$

Use cylindrical coordinates (r, θ, z) where z replaces x in previous CV analysis.

$$\frac{1}{r}\frac{\partial}{\partial r}(rv_r) + \frac{1}{r}\frac{\partial}{\partial \theta}(v_\theta) + \frac{\partial v_z}{\partial z} = 0$$

where
$$\underline{V} = v_r \hat{e_r} + v_\theta \hat{e_\theta} + v_z \hat{e_z}$$

Assume $v_{\theta} = 0$ i.e. no swirl and fully developed flow $\frac{\partial v_z}{\partial z} = 0$, which shows $v_r = \text{constant} = 0$ since $v_r(R) = 0$

$$\therefore \underline{V} = v_z \widehat{e_z} = u(r) \widehat{e_z}$$

Momentum:

$$\rho \frac{D\underline{V}}{Dt} = \rho \frac{\partial \underline{V}}{\partial t} + \rho \underline{V} \cdot \nabla \underline{V} = -\nabla (\mathbf{p} + \gamma \mathbf{z}) + \mu \nabla^2 \underline{V}$$

Where:

$$\underline{V} \cdot \nabla = v_r \frac{\partial}{\partial r} + v_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + v_z \frac{\partial}{\partial z}$$

z equation:

$$\rho \left[\frac{\partial u}{\partial t} + \underline{V} \cdot \nabla \underline{V} \right] = -\frac{\partial}{\partial z} (p + \gamma z) + \mu \nabla^2 u$$

$$\underline{V} \cdot \nabla \underline{V} = v_r \frac{\partial u}{\partial r} + v_\theta \frac{1}{r} \frac{\partial u}{\partial \theta} + v_z \frac{\partial u}{\partial z} = 0$$

$$0 = \underbrace{-\frac{\partial}{\partial z}(p + \gamma z)}_{f(z)} + \underbrace{\mu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r}\right)}_{f(r)} \therefore \text{ both terms must be constant}$$

$$\frac{\mu}{r} \frac{\partial}{\partial r} (r \frac{\partial u}{\partial r}) = \frac{\partial \hat{p}}{\partial z}$$

$$\Rightarrow r \frac{\partial u}{\partial r} = \frac{1}{2\mu} \frac{\partial \hat{p}}{\partial z} r^2 + A$$

$$\Rightarrow \frac{\partial u}{\partial r} = \frac{1}{2\mu} \frac{\partial \hat{p}}{\partial z} r + A$$

$$\Rightarrow u = \frac{1}{4\mu} \frac{\partial \hat{p}}{\partial z} r^2 + A \ln r + B \qquad \hat{p} = p + \gamma z$$

$$u(r=0)$$
 finite \rightarrow $A=0$

$$u(r=R) = 0 \qquad \Rightarrow \quad B = -\frac{R^2}{4\mu} \frac{d\hat{p}}{dz}$$

$$u(r) = \frac{r^2 - R^2}{4\mu} \frac{d\hat{p}}{dz} = u_{\text{max}} (1 - r^2 / R^2) \qquad u_{\text{max}} = u(0) = -\frac{R^2}{4\mu} \frac{d\hat{p}}{dz}$$

$$\tau_{rz} = \mu \left[\frac{\partial v_r}{\partial z} + \frac{\partial u}{\partial r} \right] = \mu \frac{\partial u}{\partial r} \quad \text{fluid shear stress}$$

$$= \frac{r}{2} \frac{\partial \hat{p}}{\partial z} \quad \text{where } \frac{\partial u}{\partial r} = \frac{r}{2\mu} \frac{\partial \hat{p}}{\partial z}$$

$$\tau_w = \mu \frac{\partial u}{\partial y} \Big|_{y=0} = -\mu \frac{\partial u}{\partial r} \Big|_{r=R} = -\frac{R}{2} \frac{\partial \hat{p}}{\partial z} \quad \text{As per CV analysis}$$

$$y = R - r, \quad \frac{du}{dy} = \frac{dr}{dy} \frac{du}{dr} = -\frac{du}{dr}$$

Note: $\tau = \tau_{rz} = \mu \varepsilon_{rz} = -2\mu \omega_{\theta}$ (see Appendix D) for $\frac{\partial v_r}{\partial z} = 0$,

i.e., only one component of vorticity which also varies linearly across the pipe with its maximum at the wall.

$$Q = \int_{0}^{R} u(r) 2\pi r \, dr = \frac{-\pi R^{4}}{8\mu} \frac{d^{2}p}{dz} = \frac{1}{2} u_{\text{max}} \pi R^{2}$$

Note: for given piezometric pressure drop the flow rate is inversely proportional to the viscosity and proportional to the radius to the fourth power such that doubling the pipe radius produces 16-fold increase in the flow rate: Poiseuille's law

$$V_{ave} = \frac{Q}{\pi R^2} = \frac{1}{2} u_{\text{max}} = \frac{-R^2}{8\mu} \frac{d p}{dz} \qquad \text{vs. } V_{\text{ave}} = .53 u_{\text{max}}$$
for $u(r) = u_{\text{max}} (1 - r/R)^{1/2}$

Substituting $V = V_{ave}$

$$\begin{split} f &= \frac{8\tau_w}{\rho V^2} \\ \tau_w &= -\frac{R}{2} \frac{\partial \hat{p}}{\partial z} = -\frac{R}{2} \times \frac{8\mu V_{ave}}{-R^2} = \frac{4\mu V_{ave}}{R} = \frac{8\mu V}{D} \end{split}$$

Substituting τ_w into f:

$$f = \frac{64\,\mu}{\rho DV} = \frac{64}{\text{Re}_D}$$

or

$$C_f = \frac{\tau_w}{\frac{1}{2}\rho V^2} = \frac{f}{4} = \frac{16}{\text{Re}_D}$$

$$\Delta h = h_L = f \frac{L}{D} \frac{V^2}{2g} = \frac{64\mu}{\rho DV} \times \frac{L}{D} \times \frac{V^2}{2g} = \frac{32\mu LV}{\rho g D^2} \quad \propto V$$

$$for \ \Delta z = 0 \quad \to \quad \Delta p \propto V$$

Both f and C_f based on V^2 normalization, which is appropriate for turbulent but not laminar flow. The more appropriate case for laminar flow is:

$$Poiseuille # (P_0) \begin{cases} P_{0c_f} = C_f \text{ Re} = 16 \\ P_{0f} = f \text{ Re} = 64 \end{cases}$$
 for pipe flow

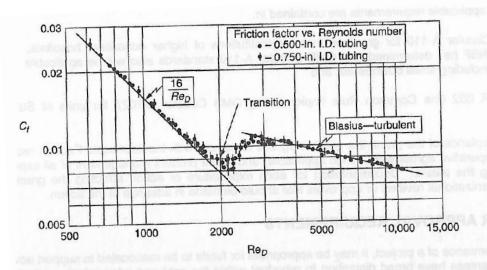
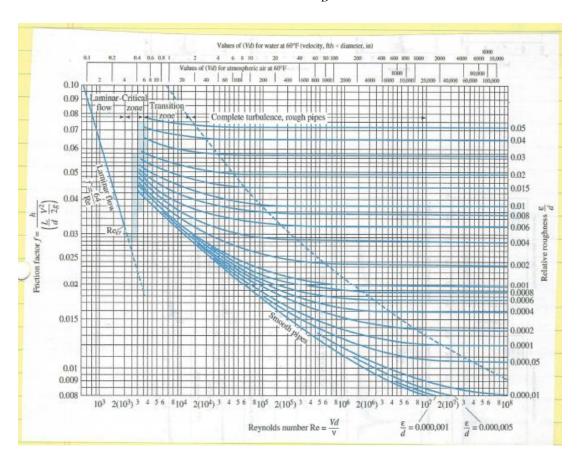
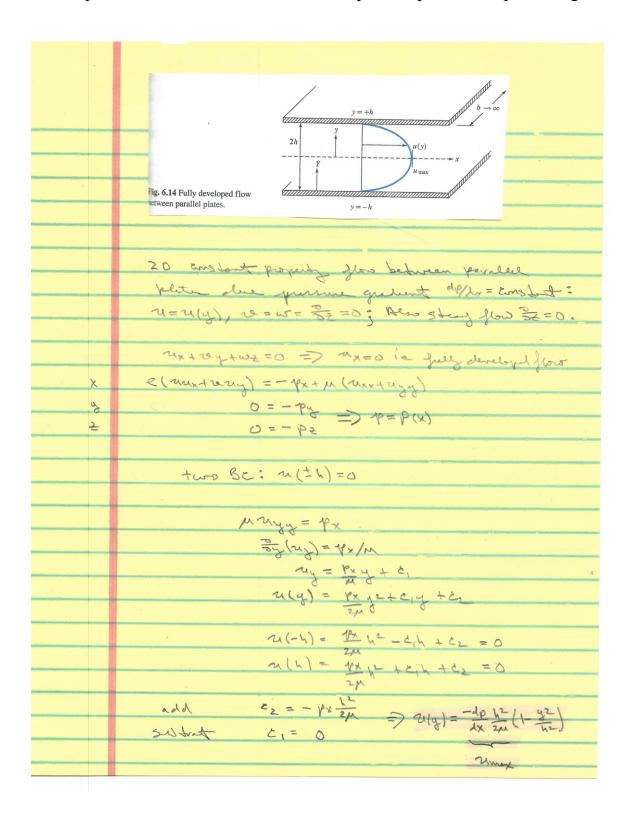




FIGURE 3-7
Comparison of theory and experiment for the friction factor of air flowing in small-bore tubles. [After Senecal and Rothfus (1953).]

Blasius power law
$$C_f = \frac{0.0791}{\text{Re}_D^{1/4}}$$
 (Turbulent flow)

Compare with solution for flow between parallel plates with pressure gradient:

2	
	1 1 12 / 2 11
0	IN = Txy = M (My+0x)=-Max = (Ta)
	IN = Txy = M (xy+2x)=-Mdx 2/ (-2m)/y==h
Control No. 200 April 10 Control	= ± ± h = + 2 mmax
	IZWI = Ich = Some y==h, Sut + upper -1-lover
	Wall
The second secon	
	12 (22)
2	2= xy = 2mg (1-83/2) 2=-4x =0
	x= nmax (8-312) x=0 y=0
	x= = 22 max 1/3 y= = h
(3)	WZ= 2x-uy= 22mmy y 7xy to so a dier
	hat exist iz Y + Die
	N.
(4)	Q = S Y. Mat = (ndt =) 21 mg (1-42) bdg
	-h
10 7	1 = = 5 hamox
> similar !	$\left d_{y} - \frac{1}{h^{2}} \right ^{2} d_{y} = y - \frac{3^{3}}{3 h^{2}} \right = \frac{1}{3} 5 h 2 more$
Same [3h+3h] = 45h 21mox Vare = Q/A = Q/2hs = = 2 12mox
The state of the s	
	4
	on Q= >2-7e = \$ 2 march per unt width
*	
	Vare = Q/A = = = 2 umax

	C
	Summary
apidash Seggi palitanlarini Tapi iladarini wette	1. 42/ \ -do h2 -de - de
	21 = 21 max (1-82/12) 21 mox = - 25 h2 - 24 = 24
4	
	12 An
	Q=21/2 AP = 1/2 AP
	3M
the second secon	Vne = Q/A = 12 AP = 3 21 max
	ME = TH = 3 MMOX
	lde l Alel a bl
	IN = A dry y = h = Oph = 3MVne Vwe = T
Control of the Contro	1 7 - h
	·
	h+= \frac{5p}{2g} = \frac{3mVL}{29h^2} \text{Dh} = \frac{4(2hb)}{p} = \frac{1-500}{25+4h}
	n+====================================
	, O CDN
	1 1/2
	= f = V2 = th
	f = hf - hf Dnzg 3mv Ohzg
	f = hf = hf Dn 28 = 3m vi On 28
	(C/13h) 22
	V = C
	_ th
	f=96/Renn = 3mxtoney
	f=96/Renn = 3mxtoney
	68/21/5/
	<== 5/4 = Z4/ReDh
	= 6 m4h/ezzv
	11/2/2
	Pocy = Reonics = 24
	cf regact
	= Z+M/ehV
	Pof = 120 nf = 96
	= 96M/24hV
minute and the second	121 1 5 2 4 4
	Some pipe other than
	constants Poppe = 2/2 f = 96/Repn
	constants Poppe = 2/3 f = 96/16pm
	to Channel

Concept of hydraulic diameter for noncircular ducts

For noncircular ducts, $\tau_{\rm w}=$ f(perimeter); thus, new definitions of $f=\frac{8\tau_{\rm w}}{\rho V^2}$ and $C_f=\frac{2\tau_{\rm w}}{\rho V^2}$ are required.

Define average wall shear stress

$$\bar{\tau}_w = \frac{1}{P} \int_0^P \tau_w \, ds$$
 ds = arc length, P = perimeter

Momentum:

$$\Delta pA - \overline{\tau}_{w}PL + \underbrace{\gamma AL}_{W} \left(\frac{\Delta z}{L}\right) = 0$$

$$\Delta h = \Delta (p/\gamma + z) = \frac{\overline{\tau}_w L}{\gamma A/P}$$

A/P =R_h= Hydraulic radius (=R/2 for circular pipe and $\Delta h = \frac{\tau_w L}{\gamma R/2}$)

Energy:

$$\Delta h = h_L = \frac{\overline{\tau}_w L}{\gamma A/P}$$

$$\overline{\tau}_{w} = \frac{A}{P} \frac{\Delta h \gamma}{L} = \frac{-A\gamma}{P} \frac{dh}{dx} = \frac{-A}{P} \frac{d(p + \gamma z)}{dx} = \frac{A}{P} \left(-\frac{d p}{dx} \right) \quad \text{non-circular duct}$$

Recall for circular pipe:

$$\tau_{w} = -\frac{R}{2} \frac{d\hat{p}}{dx} = -\frac{D}{4} \frac{d\hat{p}}{dx}$$

In analogy to circular pipe:

$$\overline{\tau}_{W} = \frac{A}{P} \left(-\frac{d\hat{p}}{dx} \right) = \frac{D_{h}}{4} \left(-\frac{d\hat{p}}{dx} \right) \Rightarrow \frac{A}{P} = \frac{D_{h}}{4} \Rightarrow D_{h} = \frac{4A}{P} \quad \text{Hydraulic diameter}$$

For multiple surfaces such as concentric annulus P and A based on wetted perimeter and area

$$\overline{f} = \frac{8\overline{\tau}_w}{\rho V^2} = \overline{f}(Re_{D_h}, \varepsilon/D_h) \qquad Re_{D_h} = \frac{VD_h}{v}$$

$$\Delta h = h_L = \frac{\overline{\tau}_w L}{\gamma R_h} = \frac{\rho V^2 \overline{f}}{8} \frac{L}{\gamma R_h} = \overline{f} \frac{L}{D_h} \frac{V^2}{2g}$$

However, accuracy not good for laminar flow $\overline{f} = 64/Re_{D_h}$ (about 40% error) and marginal turbulent flow $\overline{f}(Re_{D_h}, \varepsilon/D_h)$ (about 15% error).

a. <u>Accuracy for laminar flow (smooth non-circular pipe)</u>

Recall for pipe flow:

$$Poiseuille # (P_0) \begin{cases} P_{0c_f} = C_f \text{ Re} = 16 \\ P_{0f} = f \text{ Re} = 64 \end{cases}$$

Recall for channel flow:

$$f = \frac{24\mu}{\rho Vh} = \frac{48}{\text{Re}_{2h}} = \frac{96}{\underbrace{\text{Re}_{4h}}_{\text{Re}_{D_h}}}$$

$$C_f = f/4 \Rightarrow$$

$$C_f = \frac{6\mu}{\rho Vh} = \frac{12}{\text{Re}_{2h}} = \frac{24}{\text{Re}_{4h}}$$

$$\text{Re}_{D_h}$$

Poiseuille #
$$(P_0)$$
 $\begin{cases} P_{0c_f} = C_f \operatorname{Re}_{D_h} = 24 \\ P_{0f} = f \operatorname{Re}_{D_h} = 96 \end{cases}$

Therefore:

$$\frac{P_{0c_f \ pipe}}{P_{0c_f \ channelbasedonD_h}} = \frac{P_{0_f \ pipe}}{P_{0_f \ channelbasedonD_h}} = \frac{16}{24} = \frac{64}{96} = \frac{2}{3}$$

Thus, if we could not work out the laminar theory and chose to use the approximation $f \operatorname{Re}_{D_h} \approx 64 \operatorname{or} C_f \operatorname{Re}_{D_h} \approx 16$, we would be 33 percent low for channel flow.

b. <u>Accuracy for turbulent flow (smooth non-circular pipe)</u>

For turbulent flow, D_h works much better especially if combined with "effective diameter" concept based on ratio of exact laminar circular and noncircular duct P_0 numbers, i.e., $16/\overline{P}_{0c_f}$ or $64/\overline{P}_{0f}$.

First recall turbulent circular pipe solution and compare with turbulent channel flow solution using log-law in both cases

Channel Flow

$$V = \frac{1}{h} \int_{0}^{h} u^* \left[\frac{1}{\kappa} \ln \frac{(h - y)u^*}{v} + B \right] dY \quad Y = h-y \quad \text{wall coordinate}$$

$$= u^* \left(\frac{1}{\kappa} \ln \frac{hu^*}{v} + B - \frac{1}{\kappa} \right)$$

$$D_h = \frac{4A}{P} = \lim_{B \to \infty} \frac{4(2hB)}{2B + 4h} = 4h \text{ h= half width}$$

Define
$$\operatorname{Re}_{D_h} = \frac{VD_h}{v} = \frac{V4h}{v}$$

$$f^{-1/2} = 2\log(\text{Re}_{D_h} f^{1/2}) - 1.19 \text{ (Using D_h)}$$

Very nearly the same as circular pipe

7% to large at $Re = 10^5$

4% to large at Re = 10^8

Therefore, error in D_h concept relatively smaller for turbulent flow.

Note
$$f^{-1/2}(channel) = 2\log(0.64 \operatorname{Re}_{D_h} f^{1/2}) - 0.8$$

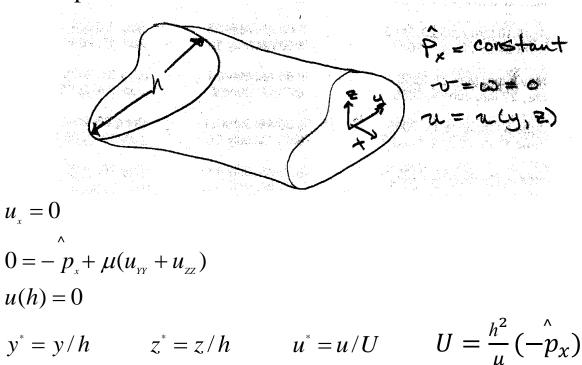
Rewriting such that exact agreement pipe flow with Re_D replaced by $0.64Re_{Dh}$

Define D_{effective} =
$$0.64D_h \sim \frac{P_{0f}(circle) = 16}{P_{0f}(channel) = 24}D_h$$

Laminar solution

(therefore, improvement on D_h is)

$$\begin{aligned} \operatorname{Re}_{D_{eff}} &= \frac{VD_{eff}}{v} \\ D_{eff} &= \frac{P_{0f}(circle)}{P_{0f}(non-circular)} D_h = \frac{P_{0C_f}(circle)}{P_{0C_f}(non-circular)} D_h \end{aligned}$$


Or

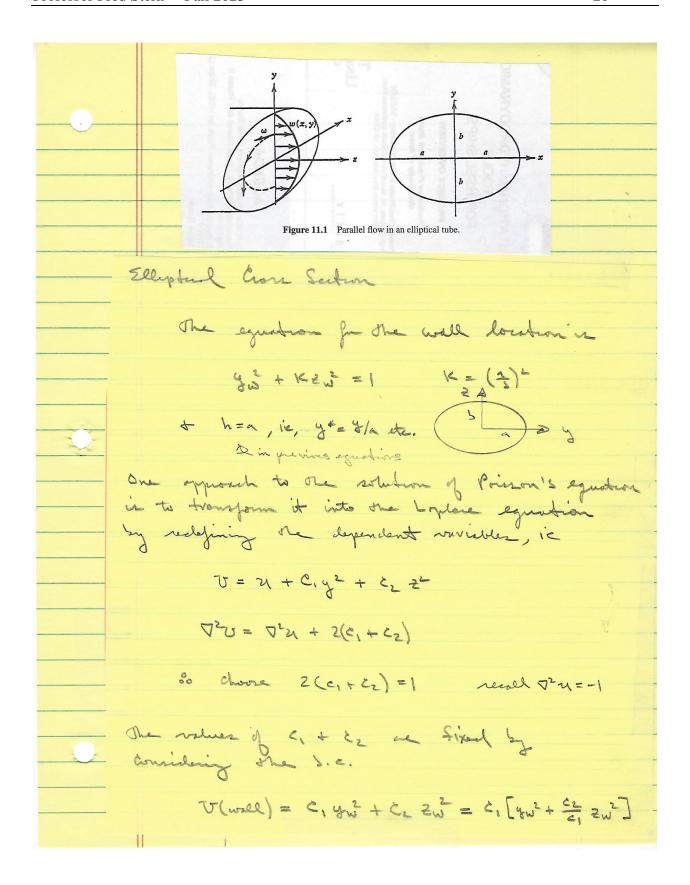
$$D_{eff} = \frac{64}{P_{0f}(non-circular)}D_h = \frac{16}{P_{0C_f}(non-circular)}D_h$$

From exact laminar solution

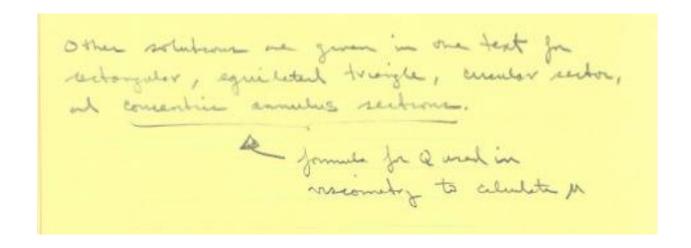
19

Non-Circular Ducts: Exact laminar solutions are available for any "arbitrary" cross section for laminar steady fully developed duct flow.

Re only enters through stability and transition


Related
$$u_{max}$$

$$\nabla^2 u = -1 \qquad Poisson \ equation$$


u(1) = 0 Dirichlet boundary condition

Note: No characteristic velocity and length scale for fully developed flow therefore use characteristic duct width h and U with units' L/T formed from μ , h and p_x using dimensional analysis. The pressure force/ \forall ($-p_x$) is balanced by the net viscous force/ \forall ($\mu U/h^2$) and their nondimensional ratio provides measure for U = u_{max} .

BVP can be solved by many methods such as complex variables and conformal mapping, transformation into Laplace equation by redefinition of dependent variables, and numerical methods.

To (world) = Constant = C;
if c5/6'= K (12 combanion 2m2+K5m3=1)
=> T(well) = c, + c, = 2(1+K) c2 = 2(1+K)
2(c1+c2)=1
$\nabla^2 U = 0$ $\nabla^2 U = 0$ $\nabla (wall) = e_1$ here problem to be
Since, the maximum of the minimum of the Loplace
equation must occur on the boundary
$d \leq \overline{U} \leq R$ $\overline{U} = \alpha_1 + \alpha_1 y^2 + \alpha_2 z^2 = \alpha_1$ $d \neq R \text{ must be on bondy}$ $d = \alpha_1 + \alpha_2 y^2 + \alpha_2 z^2 = \alpha_1$ $d = \alpha_1 + \alpha_2 y^2 + \alpha_2 z^2 = \alpha_1$
U = 2 = constat on well $U = 2 = constat on well$ $U = 2 = 2 = constat on well$ $U = 2 = 2 = constat on well$ $U = 2 = 2 = constat on well$
The isovels ne ellipser which are conforal with the well ellipse. The vortered components
$\omega_{2} = \frac{1}{K+1} \mathcal{Y} \qquad \omega_{3} = -\frac{K}{K+1} \mathcal{Z}$
$ \omega = \frac{1}{k+1} \left(y^2 + 16z^2 \right)^{1/2} = \text{constant on allepses}$
Europoral with the wall, ic,
-at Px W/2 (K+1) Note Ne not parameter of K
All dust flow have Q = 2 at (-d\$/dz) flow rate pressure drop relation where & depends on cross section
Shope. For Evener pipe K=1 ex C=T/8=.3926

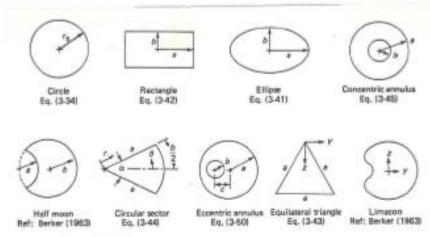


FIGURE 3-7
Some cross sections for which fully developed flow solutions are known; for still more, consult Berker (1963, pp. 67ff.).

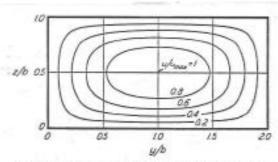
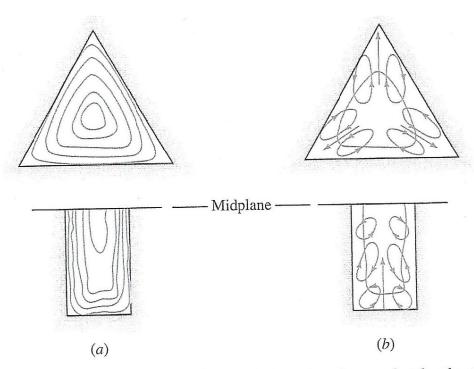



Fig. 77. Velocity distribution in a rectangular conduit.

Fig. 6.16 Illustration of secondary turbulent flow in noncircular ducts: (a) axial mean velocity contours; (b) secondary flow in-plane cellular motions. (After J. Nikuradse, dissertation, Göttingen, 1926.)

For rectangular and triangular ducts, for laminar flow τ_w largest mid-points of the sides and zero in corners, whereas for turbulent flow τ_w nearly constant along the sides and falls sharply to zero in the corners due to secondary flows induced by the turbulence anisotropy. For laminar flows in straight ducts secondary flows are absent. As a result the hydraulic diameter concept works poorly for laminar vs. turbulent flow.

Elliptical section: $y^2/a^2 + z^2/b^2 \le 1$:

$$u(y, z) = \frac{1}{2\mu} \left(-\frac{d\hat{p}}{dx} \right) \frac{a^2 b^2}{a^2 + b^2} \left(1 - \frac{y^2}{a^2} - \frac{z^2}{b^2} \right)$$

$$Q = \frac{\pi}{4\mu} \left(-\frac{d\hat{p}}{dx} \right) \frac{a^3 b^3}{a^2 + b^2}$$
(3-47)

Rectangular section: $-a \le y \le a, -b \le z \le b$:

$$u(y,z) = \frac{16a^2}{\mu \pi^3} \left(-\frac{d\hat{p}}{dx} \right) \sum_{i=1,3,5,...}^{\infty} (-1)^{(i-1)/2} \left[1 - \frac{\cosh(i\pi z/2a)}{\cosh(i\pi b/2a)} \right] \times \frac{\cos(i\pi y/2a)}{i^3}$$
(3-48)

$$Q = \frac{4ba^3}{3\mu} \left(-\frac{d\hat{p}}{dx} \right) \left[1 - \frac{192a}{\pi^5 b} \sum_{i=1,3,5,\dots}^{\infty} \frac{\tanh(i\pi b/2a)}{i^5} \right]$$

Equilateral triangle of side a: coordinates in Fig. 3-9:

$$u(y, z) = \frac{-d\hat{p}/dx}{2\sqrt{3} a\mu} \left(z - \frac{1}{2}a\sqrt{3}\right) (3y^2 - z^2)$$

$$Q = \frac{a^4\sqrt{3}}{320\mu} \left(\frac{d\hat{p}}{dx}\right)$$
(3-49)

Circular sector: $-\frac{1}{2}\alpha \le \theta \le +\frac{1}{2}\alpha$, $0 \le r \le a$:

$$u(r,\theta) = \frac{d\hat{p}/dx}{4\mu} \left[r^2 \left(1 - \frac{\cos 2\theta}{\cos \alpha} \right) - \frac{16a^2\alpha^2}{\pi^3} \right]$$

$$\times \sum_{i=1,3,5,\dots}^{\infty} (-1)^{(i+1)/2} \left(\frac{r}{a} \right)^i \frac{\cos (i\pi\theta/\alpha)}{i(i+2\alpha/\pi)(i-2\alpha/\pi)}$$

$$Q = \frac{a^4}{4\mu} \left(-\frac{d\hat{p}}{dx} \right)$$

$$\times \left[\frac{\tan \alpha - \alpha}{4} - \frac{32\alpha^4}{\pi^5} \sum_{i=1,3,5,\dots}^{\infty} \frac{1}{i^2(i+2\alpha/\pi)^2(i-2\alpha/\pi)} \right]$$
(3-50)

Concentric circular annulus: $b \le r \le a$:

$$u(r) = \frac{-d\hat{p}/dx}{4\mu} \left[a^2 - r^2 + (a^2 - b^2) \frac{\ln(a/r)}{\ln(b/a)} \right]$$

$$Q = \frac{\pi}{8\mu} \left(-\frac{d\hat{p}}{dx} \right) \left[a^4 - b^4 - \frac{(a^2 - b^2)^2}{\ln(a/b)} \right]$$
(3-51)

This is but a sample of the wealth of solutions available. The formula for a concentric annulus is important in viscometry, with a measured Q being used to calculate μ . To increase the pressure drop, the clearance (a-b) is held small, in which case Eq. (3-51) for Q becomes the difference between two nearly equal numbers. However, if we expand the bracketed term $[\]$ in a series, the result is

$$(a^4 - b^4) - \frac{(a^2 - b^2)^2}{\ln(a/b)} = \frac{4}{3}b(a - b)^3 + \frac{2}{3}(a - b)^4 + \dots + 0(a - b)^5$$

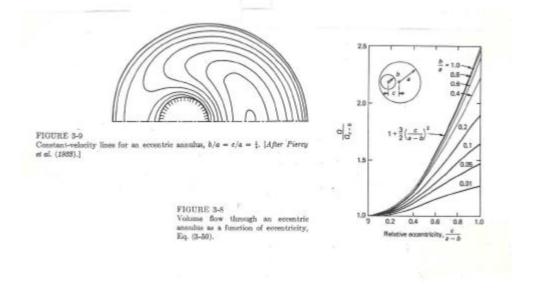
so that Q for small clearance is seen to be cubic in (a - b).

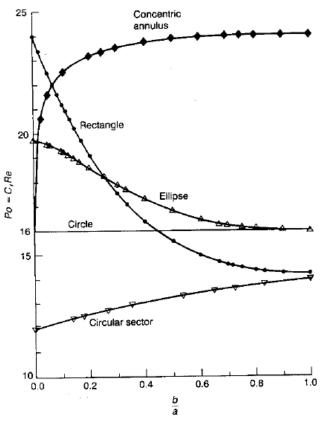
The eccentric annulus in Fig. 3-9 has practical applications, for example, when a needle valve becomes misaligned. The solution was given by Piercy et al. (1933), using an elegant complex-variable method which transformed the geometry to a concentric annulus, for which the solution was already known, Eq. (3-51). We reproduce here only their expression for volume rate of flow:

$$Q = \frac{\pi}{8\mu} \left(-\frac{d\hat{p}}{dx} \right) \left[a^4 - b^4 - \frac{4c^2M^2}{\beta - \alpha} - 8c^2M^2 \sum_{n=1}^{\infty} \frac{ne^{-n(\beta + \alpha)}}{\sinh(n\beta - n\alpha)} \right]$$
 (3-52) where
$$M = (F^2 - a^2)^{1/2} \qquad F = \frac{a^2 - b^2 + c^2}{2c}$$

$$\alpha = \frac{1}{2} \ln \frac{F + M}{F - M} \qquad \beta = \frac{1}{2} \ln \frac{F - c + M}{F - c - M}$$

Flow rates computed from this formula are compared in Fig. 3-10 to the concentric result $Q_{c=0}$ from Eq. (3-51). It is seen that eccentricity substantially increases the flow rate, the maximum ratio of $Q/Q_{c=0}$ being 2.5 for a narrow annulus of maximum eccentricity. The curve for b/a=1 can be derived from lubrication theory:


Narrow annulus:
$$\frac{Q}{Q_{c=0}} = 1 + \frac{3}{2} \left(\frac{c}{a-b}\right)^2$$
 (3-53)


The reason for the increase in Q is that the fluid tends to bulge through the wider side. This is illustrated for one case in Fig. 3-11, where the wide side develops a set of closed high-velocity streamlines. This effect is well known to piping engineers, who have long noted the drastic leakage that occurs when a nearly closed valve binds to one side.

A solution mostly very complex voriettes in nothing in the text. How, the result for the volume from rate in given Q = Q(a, b, c)Recentrated

Q($(X_n = 1) = 1 + \frac{3}{2} (\frac{b}{a-b})^2$ Recentrated

Recentric forwards annulus solution and a secondarially are solventially and the nate well completed over against the nate well against the nate

For laminar flow, \overline{P}_0 varies greatly, therefore it is better to use the exact solution vs. D_h as discussed next.

FIGURE 3-13
Comparison of Poiseuille numbers for various duct cross sections when Reynolds number is scaled by the hydraulic diameter. [Numerical data taken from Shah and London (1978).]

Table 6.3 Laminar Friction Factors for a Concentric Annulus

b/a	$f \operatorname{Re}_{\Omega_i}$	$D_{\rm eff}/D_h = 1/\zeta$
0.0	64.0	1.000
0.00001	70.09	0.913
0.0001	71.78	0.892
100.0	74.68	0.857
0.01	80.11	0.799
0.05	86.27	0.742
0.1	89.37	0.716
0.2	92.35	0.693
0.4	94.71	0.676
0.6	95.59	0.670
0.8	95.92	0.667
1.0	96.0	0.667

 $\tau_{wi}{>}\tau_{wo}$

Table 6.4 Laminar Friction Constants *f* Re for Rectangular and Triangular Ducts

b a		20		
b/a	$f\mathbf{Re}_{D_h}$	θ , deg	$f\mathbf{Re}_{D_h}$	
0.0	96.00	0	48.0	
0.05	89.91	10	51.6	
0.1	84.68	20	52.9	
0.125	82.34	30	53.3	
0.167	78.81	40	52.9	
0.25	72.93	50	52.0	
0.4	65.47	60	51.1	
0.5	62.19	70	49.5	
0.75	57.89	80	48.3	
1.0	56.91	90	48.0	

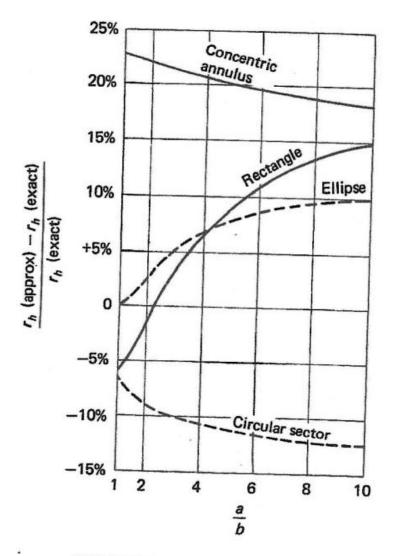


FIGURE 3-11 Percent error in the approximate hydraulic radius, Eq. (3-55), compared to the exact laminar-flow expression, Eq. (3-58).