
ME:5160 (58:160) Intermediate Mechanics of Fluids 

Fall 2024 – HW9 Solution 

P6.39 By analogy with laminar shear,  =  du/dy. T. V. Boussinesq in 1877 postulated 

that turbulent shear could also be related to the mean-velocity gradient turb =  du/dy, 

where  is called the eddy viscosity and is much larger than . If the logarithmic-overlap 

law, Eq. (6.28), is valid with   w, show that   u*y. 

Solution: Differentiate the log-law, Eq. (6.28), to find dudy, then introduce the eddy 

viscosity into the turbulent stress relation 
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Note that / = y+, which is much larger than unity in the overlap region. 

 

P6.40 Theodore von Kármán in 1930 theorized that turbulent shear could be represented 

by  turb =  dudy where  = 2y2du/dy is called the mixing-length eddy viscosity and   

0.41 is Kármán’s dimensionless mixing-length constant [2,3]. Assuming that  turb  w 

near the wall, show that this expression can be integrated to yield the logarithmic-overlap 

law, Eq. (6.28). 

Solution: This is accomplished by straight substitution: 
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To convert this to the exact form of Eq. (6.28) requires fitting to experimental data 



P6.44 Mercury at 20C flows through 4 meters of 7-mm-diameter glass tubing at an 

average velocity of 5 m/s. Estimate the head loss in meters and the pressure drop in kPa. 

Solution: For mercury at 20C, take  = 13550 kg/m3 and  = 0.00156 kg/ms. Glass 

tubing is considered hydraulically “smooth,” /d = 0. Compute the Reynolds number: 
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P6.55 The reservoirs in Fig. P6.55 contain water at 20C. If the pipe is smooth with L = 

4500 m and d = 4 cm, what will the flow rate in m3/h be for z = 100 m? 

Solution: For water at 20C, take  = 998 kg/m3 and  = 0.001 kg/ms. The energy 

equation from surface 1 to surface 2 gives 
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Fig. P6.55 
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Iterate with an initial guess of f  0.02, calculating V and Re and improving the guess: 
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Alternately, one could, of course, use Excel.  The above process converges to 
3f 0.0227,  Re 35000,  V 0.877 m/s, Q 0.0011 m /s / . Ans.= = =   3

4.0 m h  

 

 

 

 

  

 



 


