ME:5160 (58:160) Intermediate Mechanics of Fluids

Fall 2024 – HW9 Solution

P6.39 By analogy with laminar shear, $\tau = \mu \frac{du}{dy}$. T. V. Boussinesq in 1877 postulated that turbulent shear could also be related to the mean-velocity gradient τ urb = ε *du/dy*, where ε is called the *eddy viscosity* and is much larger than μ . If the logarithmic-overlap law, Eq. (6.28), is valid with $\tau \approx \tau w$, show that $\varepsilon \approx \kappa \rho u^* v$.

Solution: Differentiate the log-law, Eq. (6.28), to find *dudy*, then introduce the eddy viscosity into the turbulent stress relation

$$
If \frac{u}{u^*} = \frac{1}{\kappa} \ln \left(\frac{yu^*}{v} \right) + B, \text{ then } \frac{du}{dy} = \frac{u^*}{\kappa y}
$$

Then, if $\tau \approx \tau_w = \rho u^{*2} = \varepsilon \frac{du}{dy} = \varepsilon \frac{u^*}{\kappa y}$, solve for $\varepsilon = \kappa \rho u^* y$ Ans.

Note that $\varepsilon/\mu = \kappa y^+$, which is much larger than unity in the overlap region.

P6.40 Theodore von Kármán in 1930 theorized that turbulent shear could be represented by τ turb = ε du/dy where $\varepsilon = \rho \kappa^2 y^2 |du/dy|$ is called the *mixing-length eddy viscosity* and $\kappa \approx$ 0.41 is Kármán's dimensionless *mixing-length constant* [2,3]. Assuming that τ turb $\approx \tau w$ near the wall, show that this expression can be integrated to yield the logarithmic-overlap law, Eq. (6.28).

Solution: This is accomplished by straight substitution:

$$
\tau_{\text{turb}} \approx \tau_{\text{w}} = \rho \mathbf{u}^{*2} = \varepsilon \frac{\mathrm{du}}{\mathrm{dy}} = \left[\rho \kappa^2 y^2 \left| \frac{\mathrm{du}}{\mathrm{dy}} \right| \right] \frac{\mathrm{du}}{\mathrm{dy}}, \text{ solve for } \frac{\mathrm{du}}{\mathrm{dy}} = \frac{\mathbf{u}^*}{\kappa y}
$$

Integrate:
$$
\int du = \frac{u^*}{\kappa} \int \frac{dy}{y}
$$
, or: $u = \frac{u^*}{\kappa} \ln(y) + constant$ Ans.

To convert this to the exact form of Eq. (6.28) requires fitting to experimental data

P6.44 Mercury at 20 °C flows through 4 meters of 7-mm-diameter glass tubing at an average velocity of 5 m/s. Estimate the head loss in meters and the pressure drop in kPa.

Solution: For mercury at 20°C, take $\rho = 13550 \text{ kg/m}^3$ and $\mu = 0.00156 \text{ kg/m} \cdot \text{s}$. Glass tubing is considered hydraulically "smooth," $\varepsilon/d = 0$. Compute the Reynolds number:

$$
Re_d = \frac{\rho V d}{\mu} = \frac{13550(5)(0.007)}{0.00156} = 304,000; \text{ Moody chart smooth: } f \approx 0.0143
$$

$$
h_f = f \frac{L}{d} \frac{V^2}{2g} = 0.0143 \left(\frac{4.0}{0.007}\right) \frac{5^2}{2(9.81)} = 10.4 \text{ m} \quad Ans. \text{ (a)}
$$

$$
\Delta p = \rho g h_f = (13550)(9.81)(10.4) = 1,380,000 \text{ Pa} = 1380 \text{ kPa} \quad Ans. \text{ (b)}
$$

P6.55 The reservoirs in Fig. P6.55 contain water at 20 $^{\circ}$ C. If the pipe is smooth with $L =$ 4500 m and $d = 4$ cm, what will the flow rate in m³/h be for $\Delta z = 100$ m?

Solution: For water at 20°C, take $\rho = 998 \text{ kg/m}^3$ and $\mu = 0.001 \text{ kg/m}$. The energy equation from surface 1 to surface 2 gives

Fig. P6.55

Then 100 m =
$$
f\left(\frac{4500}{0.04}\right) \frac{V^2}{2(9.81)}
$$
, or $fV^2 \approx 0.01744$

Iterate with an initial guess of $f \approx 0.02$, calculating V and Re and improving the guess:

$$
V \approx \left(\frac{0.01744}{0.02}\right)^{1/2} \approx 0.934 \frac{m}{s}, \quad \text{Re} \approx \frac{998(0.934)(0.04)}{0.001} \approx 37300, \quad f_{\text{smooth}} \approx 0.0224
$$

$$
V_{\text{better}} \approx \left(\frac{0.01744}{0.0224}\right)^{1/2} \approx 0.883 \frac{m}{s}, \quad \text{Re}_{\text{better}} \approx 35300, \quad f_{\text{better}} \approx 0.0226, \text{ etc.....}
$$

$$
V_{\text{better}} \approx \left(\frac{0.01744}{0.0224}\right)^{1/2} \approx 0.883 \frac{m}{s}, \quad \text{Re}_{\text{better}} \approx 35300, \quad f_{\text{better}} \approx 0.0226, \text{ etc.}
$$
\nately, one could, of course, use Excel. The above process converges to

\n
$$
f = 0.0227, \text{ Re} = 35000, \text{ V} = 0.877 \text{ m/s}, \text{ Q} \approx 0.0011 \text{ m}^3/\text{s} \approx 4.0 \text{ m}^3/\text{h}. \quad \text{Ans.}
$$

Alternately, one could, of course, use Excel. The above process converges to

3