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Chapter 1: Introduction 
 

Definition of a fluid:   

 

A fluid cannot resist an applied shear stress and remain at 

rest, whereas a non-fluid (i.e., solid) can. 

 

Solids resist shear by static deformation up to an elastic 

limit of the material, after which they undergo fracture. 

 
Fluids deform continuously (undergo motion) when 

subjected to shear stress.  Consider a fluid between two 

parallel plates, with the lower one fixed and the upper 

moving at speed U, which is an example of Couette flow 

(i.e., wall/shear driven flows).  

𝑉 = 𝑢(𝑦) 𝑖̂ 
 

1-D flow velocity 

profile: linear 

 
𝑑𝑢(𝑦)

𝑑𝑦
=

𝑈

ℎ
 

u(y) 

x 

y 

u=0 

u=U 

h 
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No slip condition:   

 

Length scale of molecular mean free path λ << length scale 

of fluid motion ℓ; therefore, macroscopically there is no 

relative motion or temperature between the solid and fluid 

in contact.  Knudsen number = Kn = λ/ℓ << 1. Exceptions 

are rarefied gases and gas/liquid contact line. 

 

Newtonian fluids: 

 
Rate of Strain: 1D shear flow 𝑉 = 𝑢(𝑦) 𝑖̂, uy=du/dy, and 

1st order Taylor series 

 

(u+uy dy)dt 

x 

y 

dy dӨ = tan-1 uydydt/dy 

Fluid element with sides parallel to the 

coordinate axes at time t=0. 

Fluid element deformation at 

time t + dt 

y 

x 

dy 

u+uydy 

u 

u dt 
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𝑡𝑎𝑛 𝑑𝜃 = 𝑢𝑦𝑑𝑦𝑑𝑡/𝑑𝑦  
𝑑𝜃

𝑑𝑡
= 𝜃

.

= 𝑢𝑦 

 

(Rate-of-strain = velocity gradient) 

 

dy

du
 ==

.

 

 

For 3D flow, rate of strain 𝜀𝑖𝑗  and stress 𝜎𝑖𝑗 tensors are 

second order symmetric tensors: 

 

 𝜀𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) = 𝜀𝑗𝑖   

 

𝑉 = 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤𝑘̂ = 𝑢𝑖 = (𝑢, 𝑣, 𝑤) 

 

𝑥 = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ = 𝑥𝑖 = (𝑥, 𝑦, 𝑧) 
 

and 

 

 𝜎𝑖𝑗 =  − (𝑝 +
2

3
𝜇𝛻 ⋅ 𝑉) 𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 = 𝜎𝑗𝑖 

 

Diagonal terms are elongation/contraction in x,y,z and off 

diagonal terms are shear in (x,y), (x,z), and (y,z). 
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Liquids vs. Gases: 

 

Liquids Gases 

Closely spaced with large 

intermolecular cohesive 

forces 

Widely spaced with small 

intermolecular cohesive 

forces 

Retain volume but take 

shape of container 

Take volume and shape of 

container 

β << 1 

ρ ~ constant 

β >> 1 

ρ = ρ(p,T) 

 

Where β = coefficient of compressibility = change in 

volume/density with external pressure: 

 

pp 


=






−=






11
 

 

Or its inverse which is called bulk modulus: 

 
1p p

K 
 

 
= − = =

   

 

Liquids: K large, i.e., large Δp only causes small Δ∀. 
 
Gases: K ≈ p for T=constant, i.e., p = ρRT. 
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Recall p-v-T diagram from thermodynamics: 

 

Single phase, two phase, triple point (point at which solid, 

liquid, and vapor are all in equilibrium), critical point 

(maximum pressure at which liquid and vapor are both in 

equilibrium). 

 

Liquid, gases, and two-phase liquid-vapor behave as fluids. 
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Continuum Hypothesis 

 

Fluids are composed of molecules in constant motion and 

collision; however, in most cases, molecular motion can be 

disregarded, and the assumption is made that the fluid 

behaves as a continuum, i.e., the number of molecules 

within the smallest region of interest (a point = a fluid 

particle) are sufficient that all fluid properties are point 

functions (single valued at a point).  

 

For example:  

 

Consider the definition of the density  of a fluid: mass per 

unit volume, i.e., 

 

( )
V

M

VV

lim
t,x

* 



→
=  

 

V* = limiting volume below which molecular variations 

may be important and above which macroscopic variations 

may be important. 

 

V*  10-9 mm3 for all liquids and for gases at atmospheric 

pressure. 

 

10-9 mm3 air (at standard conditions, 20C and 1 atm) 

contains 3x107 molecules such that M/V = constant = . 

x = position vector x y z= + +i j k  

t = time 

M=mass 

 

 

 



ME:5160  Chapter 1 

Professor Fred Stern     Fall 2024  8 

 

 
Exception: rarefied gas flow. 

 

Note that typical “smallest” measurement volumes are 

about 5 μm3 (LDV) – 1 mm3 (PIV) >> 𝛿∀∗ and that the 

“scale” of macroscopic variations are very problem 

dependent.  17-181 μm – diameter of human hair. 

 

A point in a fluid is equivalently used to define a fluid 

particle or infinitesimal material element used in defining 

the governing differential equations of fluid dynamics. 

 

At a more advanced level, the Knudsen number is used to 

quantify the separation of molecular and fluid motion 

length scales: Kn = λ/ℓ where  = molecular length scale 

and ℓ = fluid motion length scale. 

 

 

1 m = 10-6 m = 10-3 mm = .001 mm 

1 nm = 10-6 mm 
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Molecular scales: 

 

Air atmosphere conditions: 

 
86 10 m −=   = mean free path 

 tλ =10-10 s     = time between collisions 

 

Smallest fluid motion scales: 

 

           ℓ = 0.1 mm = 10-4 m 

  Umax ~ 100 m/s         incompressible flow 𝑀𝑎 ≤ 0.3  

  tℓ = 10-6 s 

                   

Thus Kn~10-3 << 1, and ℓ scales larger than 3 order of 

magnitude   scales. 

 

An intermediate scale is used to define a fluid particle: 

 

λ << ℓ* << ℓ 

 

And continuum fluid properties are an average over: 

 

       ∀∗= 𝑙∗3 ≅ 10−9𝑚𝑚3 ⇒ 𝑙∗ = 10−3𝑚𝑚 = 10−6𝑚 
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Previously given smallest fluid motion scales are rough 

estimates for incompressible flow. Estimates are VERY 

conservative for laminar flow since for laminar flow, 𝑙 is 

usually taken as smallest characteristic length of the flow 

domain and Umax cannot exceed Re restriction imposed by 

transition from laminar to turbulent flow. 

 

For turbulent flow, the smallest fluid motion scales are 

estimated by the Kolmogorov scales, which define the 

length, velocity, and time scales at which viscous 

dissipation takes place i.e., at which turbulent kinetic 

energy is destroyed.  Based on the Kolmogorov hypotheses 

and dimensional analysis: 

 

( )
1 4

3  =       ( )
1 2

  =      ( )
1 4

u =  

 
 = kinematic viscosity =  

 
 =dissipation rate (rate of change of energy): 

0

3

00

2

0 // luu ==   

 

0 0 0/l u = is the “eddy” turnover time. 

 

 is determined by largest scales but occurs at smallest 

scales and is independent of v. 
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Kolmogorov scales can also be written: 
 

𝜂/𝑙0~𝑅𝑒−3/4 

𝑢𝜂/𝑢0~𝑅𝑒−1/4 

𝜏𝜂/𝜏0~𝑅𝑒−1/2 
 

Ll 0  



ULlu
= 00

0Re
 

 

Which even for large Re of interest 𝜂 ≫ 𝑙∗ 

 

For example: 100-watt mixer in 1 kg water: 
 

𝜀 = 100 𝑤𝑎𝑡𝑡/𝑘𝑔 = 100 𝑚2/𝑠2 

𝜈 = 10−6 𝑚2/𝑠2 for water 

𝜂 = 10−2 𝑚𝑚 > 𝑙∗ 
 

The smallest fluid motion scales for ships and airplanes: 
 

 U(m/s) L(m) v (m2/s) Re  (m) 
u

(m/s) 



(s) 

Ship 

(Container: 
ALIANCA MAUA) 

11.8 (23.3 

knots) 

 

272 9.76E-7 3.3E09 2E-5 0.05 4E-4 

Airplane 

(Airbus A300) 

216.8 

(Ma=0.64) 

56.2 3.7E-5 

(z=10Km) 

0.3E09 2.3E-5 1.64 1.4E-

5 

 
* 3 610 10l mm m − − = =  

http://www.containership-info.com/vessel_9283239.html
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Fluid Properties: 

 

(1) Kinematic: linear (V) and angular (ω/2) velocity, 

rate of strain (εij), vorticity (ω), and acceleration (a). 

 

(2) Transport:  viscosity (μ), thermal conductivity (k), 

and mass diffusivity (D). 

 

(3) Thermodynamic:  pressure (p), density (ρ), 

temperature (T), internal energy (û), enthalpy (h = û 

+ p/ρ), entropy (s), specific heat (Cv, Cp, γ = Cp/ Cv, 

etc). 

 

(4) Miscellaneous:  surface tension (σ), vapor pressure 

(pv), etc. 

 
(1)  Kinematic Properties: 

  

Kinematics refers to the description of the flow pattern 

without consideration of forces and moments, whereas 

dynamics refers to descriptions of F and M. 
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Lagrangian vs. Eulerian description of velocity and 

acceleration: 

 

(a) Lagrangian approach focuses on tracking 

individual fixed particles.  Useful but usually not 

needed and more complex analysis than Eulerian 

approach. 

 

 
(b) Eulerian approach focuses on fixed points in 

space. 

 
 

(u,v,w) = V(x,t) are velocity components in (x,y,z) 

directions with total derivative: 
 

𝑑𝑉(𝑥, 𝑡) =
𝜕𝑉

𝜕𝑡
𝑑𝑡 +

𝜕𝑉

𝜕𝑥𝑖
𝑑𝑥𝑖 
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However, dxi and dt are not independent since the 

derivatives are assumed to follow a fluid particle i.e., 
 

𝑑𝑥𝑖 = 𝑢𝑖𝑑𝑡 
 

𝑑𝑉(𝑥, 𝑡)

𝑑𝑡
=

𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥𝑖
𝑢𝑖 

 

In fluid mechanics special notation is used to define 

substantial/material derivative, which follows a fluid 

particle: 

 

w
z

V
v

y

V
u

x

V

t

V

Dt

VD




+




+




+




=   

 

VV
t

V

Dt

VD
)( +




=   where k

z
j

y
i

x
gradient




+




+




==  

 

+



= V

tDt

D
 = substantial/material derivative = derivative 

following motion of particle.  Often needed/used for other 

scalar/vector variables. 

 

Dt

VD
 = Lagrangian time rate of change of velocity 

 

VV
t

V
+




 = local & convective acceleration in terms of   

                     Eulerian derivatives 
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𝑎 = 𝑎𝑥𝑖̂ + 𝑎𝑦𝑗̂ + 𝑎𝑧𝑘̂ 

 

𝑎𝑥 =
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
 

 

𝑎𝑦 =
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
 

 

𝑎𝑧 =
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
 

 

Note: vector identity 𝑉 ⋅ 𝛻𝑉 = 𝛻
𝑉2

2
− 𝑉 × (𝛻 × 𝑉) , i.e., 

for irrotational flow 𝜔 = 𝛻 × 𝑉 = 0  and convective 

acceleration becomes familiar KE term in the Bernoulli 

equation. 

 

The Eulerian approach is more convenient since we are 

seldom interested in simultaneous time history of many 

individual fluid particles, but rather time history of fluid 

motion (and F, M) in fixed regions in space (control 

volumes).  However, three fundamental laws of fluid 

mechanics (i.e., conservation of mass, momentum, and 

energy) are formulated for systems (i.e., fluid particles) and 

not control volumes (i.e., regions) and therefore must be 

converted from system to CV: Reynolds Transport 

Theorem.  The material derivative is analogous to RTT, as 

it relates Lagrangian to Eulerian derivatives.   
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V(x,t) is a vector field.  Vector operator divergence and 

curl lead to other kinematics properties: 

 

Divergence (𝑉) = 𝛻 ⋅ 𝑉 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
 

 

Dt

D

Dt

D

dd

dddM

particlefluidofvolumeM



−=














=



−

=+=

==
11

0

)(












 (1) 

 

Continuity: Dt

D
VV

Dt

D 




 1
0 −==+

 (2) 

 

(1) and (2):  Dt

D
V

Dt

D 



11
−==



   

  

rate of change   per unit = - rate of change ρ per unit ρ 

 

For incompressible fluids, ρ = constant 

 

𝛻 ⋅ 𝑉 = 0 i.e., fluid particles have constant , but not 

necessarily shape. 
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𝛻 × 𝑉 = 𝑐𝑢𝑟𝑙 𝑉 = 𝜔 = 𝜔𝑥𝑖̂ + 𝜔𝑦𝑗̂ + 𝜔𝑧𝑘̂  

 

= vorticity = 2 * angular velocity of fluid particle 

  

ˆˆ ˆi j k

x y z

u v w

  
=

    

 

ˆˆ ˆw v w u v u
i j k

y z x z x y

         
= − − − + −    

         
 

 

For irrotational flow 0V =  

 

i.e., k
z

j
y

i
x

kwjviuV ˆˆˆˆˆˆ



+




+




=++==


  

 

and for ρ = constant,  

 

𝛻 ⋅ 𝑉 = 𝛻 ⋅ 𝛻𝜑 = 𝛻2𝜑 = 0→      Potential Flow Theory: 

Chapter 8 
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Other useful kinematic properties include volume and mass 

flowrate (Q,m
•

), average velocity (V ), and circulation (Γ) 

 

 
 𝑉 ⋅ 𝑠 = velocity tangent s 

 𝑉 ⋅ 𝑛 = Vn = velocity normal A 

 

𝑄 = ∫ 𝑉 ⋅ 𝑛
𝐴

 𝑑𝐴 where Q = volume of fluid per unit time 

flowing through A (i.e., flux of Vn 

through A bounded by S. “flux” 

generally used to mean surface integral 

of variable). 

 

 =
•

A

dAnVm    where m
•

= mass of fluid per unit time  

    through A 

 

V = Q/A   where V  = average velocity through A 

 

=
A

dAA    where A = surface area 
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 ==
AS

dAVdsV  (Stokes’s theorem - relates line  

      and area integrals) 

 

line integral for tangential 

velocity component  =  
A

dAn  

 

      = flux (surface integral) of  

       normal vorticity    

                                                  component 

 

Kutta-Joukowski Theorem:  lift (L) per unit span for an 

arbitrary 2D cylinder in uniform stream U with density ρ is 

L = ρUΓ, with direction of L perpendicular to U. 
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(2)  Transport Properties 

  

There is a close analogy between momentum, heat, and 

mass transport; therefore, coefficient of viscosity (μ), 

thermal conductivity (k), and mass diffusivity (D) are 

referred to as transport properties. 

 

Heat Flux: 

Fourier’s Law:  𝑞     = −𝑘𝛻𝑇 [
𝐽

𝑚2𝑠
=

𝑊

𝑚2] 

 

(Rate of heat flux is proportional to the temperature 

gradient per unit area; flux is from higher to lower T) 

 

 
W

k
mK

 
 
 

 = f(x,y,z)    →  solid 

          = constant   → liquid {isotropic} 
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Mass Flux: 

 

Fick’s Law:   𝐽 = −𝐷𝛻𝐶  [
𝑘𝑔

𝑚2𝑠
]  (amount of 

substance per unit area and time) 

 

[Rate of diffusion flux is proportional to concentration (C) 

gradient per unit volume; flux is from higher to lower C] 

 

      D  

2m

s

 
 
 

 

 

 
 

Gradient diffusion hypothesis:  transport is down mean 

scalar gradient, i.e., direction -∇ where  = T or C. 
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Momentum Flux: 

 

Newtonian Fluid:  
dy

du
 =   2

N

m

 
 
 

  1D flow 

 

(Rate of momentum flux/shear stress is proportional to the 

velocity gradient per unit area, which tends to smooth out 

the velocity profile).  Fast moving fluid particles pulls 

slower moving fluid particles underneath thereby speeding 

them up and vice versa slower moving fluid particles drags 

upper fluid particles backward thereby slowing them down. 
 

     







=

ms

kg

m

Ns
2


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For 3D flow, the shear/rate of strain relationship is more 

complex, as will be shown later in the derivation of the 

momentum equation. 

 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) + 𝛿𝑖𝑗𝜆𝛻 ⋅ 𝑉 

 

Where ( ), ,iu u v w= , ( ), ,ix x y z=  

 

λ= 2nd coefficient of viscosity = 
2

3
𝜇  (Stokes 

hypothesis) 

 

For heat and mass, transported quantities are scalars and 

fluxes are vectors; whereas for momentum, transported 

quantity is a vector (velocity gradients) and flux is a tensor.  

Also, all three laws are phenomenological (i.e., based on 

empirical evidence: experience and experiments). 

 

Non-Newtonian fluids follow nonlinear shear/rate of strain 

relationships: 

 

    τ ∝ εij
n  n < 1  pseudoplastic 

       n = 1 Newtonian 

       n > 1 dilatant 
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μ (and k) are also thermodynamic properties: 

 

  μ = μ(gas or liquid, T, p) Fig. A.1 Textbook 

 

For both gases and liquids, μ increases with p, but Δ μ is 

small and usually neglected.  For gases μ increases with T, 

whereas for liquids μ decreases with T. For gases, 

momentum transport and μ are roughly proportional to √T 

similarly as per random thermal speed. For liquids, shear 

stress is due to intermolecular cohesive forces more than 

thermal molecular motions, which decrease with T. 

 

 from molecular theory ideal gas = 
1

3
𝜌𝑣̅𝑙  where 𝑣̅  = 

average molecular speed and 𝑙 = mean free path. 

 

Kinematic viscosity: 

 

 /  =

2m

s

 
 
 

 arises in equations as  

       diffusion coefficient     Fig. A.2 Textbook 

 

Viscous diffusion derives from the molecular diffusion of 

momentum: for non-dense gas due to molecular collisions, 

whereas for liquids due to local intermolecular cohesion 

arising from their close proximity. 
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Reynolds Number: 

 

𝑅𝑒 =
𝑈𝐿𝜌

𝜇
=

𝑈𝐿

𝜐
 = 

𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
 = 

𝜌𝑈2/𝐿

𝜇𝑈/𝐿2 (per unit ∀) 

 

U = velocity scale, L = length scale  

 

The Reynolds number is an important nondimensional 

parameter (ratio inertia/viscous forces) which characterizes 

fluid flow: in particular, transition from laminar to 

turbulent flow! 
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 liquid   gas with opposite trend as f(T) 
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 same trend  vs , but  liquid and  gas similar order 

of magnitudes. 
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(3)  Thermodynamic Properties 

 

Classical Thermodynamics:  the study of equilibrium states 

of matter, in which properties are assumed uniform in 

space and time. 

 

Thermodynamic system = fixed mass separated from 

surroundings by boundary through which heat and work 

are exchanged (but not mass).  Properties are state 

functions (i.e., depend on current state only and not path), 

whereas heat transfer and work are path functions. 

 

A classical thermodynamic system is assumed static, 

whereas fluids are often in motion; however, if the 

relaxation time (time it takes material to adjust to a new 

state) is small compared to the time scale of fluid motion, 

an assumption is made that thermodynamic properties are 

point functions and that laws and state relations of static 

equilibrium thermodynamics are valid.  In gases and 

liquids at normal pressure, relaxation time is very small; 

hence, only a few molecular collisions are needed for 

adjustment.  Exceptions are rarefied gases, chemically 

reacting flows, sudden changes such as shock waves, etc. 
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For single-phase pure substances, only two properties are 

independent, and all others follow through the equations of 

state, which are determined experimentally or 

theoretically.  Some mixtures, such as air, can also be 

considered a pure substance, whereas others such as salt 

water cannot and require additional numbers of 

independent properties, e.g., sea water requires three 

(salinity, T and p) 
 

Pressure    p   [N/m2] 

Temperature   T   [K] 

Density    ρ   [kg/m3] 

Internal Energy  û   [Nm/kg] = [J/kg] 

Enthalpy   h = û + p/ ρ   [Nm/kg] = [J/kg] 

Entropy    s   [J/kg K] 
 

ρ = ρ(p,T) û = û(p,T) h = h(p,T) s = s(p,T)  

 

Specific weight  γ = ρg  [N/m3]  

 

ρair = 1.205 kg/m3      γair = 11.8 N/m3  

ρwater = 1000 kg/m3     γwater = 9790 N/m3 

ρmercury = 13580 kg/m3    γmercury = 132,948 N/m3 

  

Specific Gravity   SG=𝜌/𝜌𝑟𝑒𝑓  [-] 
 

𝑆𝐺𝑔𝑎𝑠 =
𝜌𝑔𝑎𝑠

𝜌𝑎𝑖𝑟 (20°𝐶)
=

𝜌𝑔𝑎𝑠

1.205 𝑘𝑔/𝑚3                   SGair = 1; SGHe = 0.138 

3

(4 )
1000o

liquid liquid

liquid

water C

SG
kg m

 


= =          SGwater = 1; SGHg = 13.6 
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Total stored energy per unit mass (e):   

 

    e = û + 1/2V2 + gz 

 

û = energy due to molecular activity and bonding forces 

(internal energy) 

 

1/2V2 = work required to change speed of mass from  

0 to V per unit mass (kinetic energy) 

 

gz = work required to move mass from 0 to  
ˆˆ ˆr xi yj zk= + +  against ˆg gk= −  per unit mass 

( mrgm /− ) (potential energy) 
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(4)  Miscellaneous Properties 

 

Surface Tension: 

 

Two non-mixing/immiscible liquids or liquids and gases 

form an interface across which there is a discontinuity in 

density.  The interface behaves like a stretched membrane 

under tension. The tension originates due to strong 

intermolecular cohesive forces in the liquid that are 

unbalanced at the interface due to loss of neighbors, i.e., 

liquid molecules near the interface pull the molecules on 

the interface inward, resulting in the contraction of the 

interface. 

 

σ = coefficient of surface tension N/m.   

 

Surface tension is a line force = Fσ = σL where L = length 

of the cut through the interface 

 

      

 

 σ =f (two fluids, T) 

 

 

Fσ = force on an imaginary line drawn in any direction on 

the interface; line of action is on the surface and at right 

angles to the line. 

Fluid 1 

L 
Fσ 

Fluid 2 Direction of Fσ is normal to cut. 
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Weber number = We = 
forcetensionsurface

forceinertiaLV2

=



  

        = 
2

2

L/

L/V




 (per unit ∀) 

 

Important parameter at gas-liquid or liquid-liquid 

interfaces and when these surfaces are in contact with a 

boundary. 
 

Effects of surface tension: 
 

(1) Pressure jumps across curved interfaces (γf not 

considered, i.e., force balance at interface only) 
 

 
 

      (a)  Cylindrical interface   

 Force Balance: 

 2σL = (pi-po)2RL 

 Δp = σ/R 
 

pi > po, i.e., pressure is larger on concave vs.   

          convex side of interface 
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(b) Spherical interface (droplet) 

π2Rσ = πR2Δp → Δp = 2σ/R 
 

(c) Bubble (e.g., soap bubble has two interfaces with 

air, i.e., inner/outer with nearly same R) 
 

           π2Rσ+π2Rσ = πR2Δp   → Δp = 4σ/R 
 

(d) General interface 
 

  Δp = σ(R1
-1 + R2

-1) 

R1,2 = principal radii of curvature 
 

(2) Contact Angle 
 

When the surface of a solid intersects the interface the 

contact angle can either be wetting (θ < 900) or non-wetting 

(θ > 900). θ depends on both the two fluids and the solid 

surface properties. For clean glass intersecting an air-water 

interface θ=0 (wetting) and an air-mercury interface θ=135 

(nonwetting). 
 

 

 < 90o 

wetting 

 > 90o 

non-wetting 
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(a) Capillary tube 

 

 

   

 

 

 

 

 

 

 

Surface Tension Force = Weight of fluid 

 

π2Rσcos θ = ρghπR2 
 

       
R

h


 cos2
=         h α R-1 (i.e., larger h for smaller R) 

 

 

 

 

 

 

 

 

h > 0 = wetting, h < 0 = non-wetting 

 

patm 

p(z) 

Pressure 

jumps across 

interface due 

to σ 

h 

patm 

patm 
patm 

Pressure jump 

due to σ 

p=patm+γh 
p(z) 

p=patm – γh 

p > concave, i.e., air 

side 

Non-wetting 

drives liquid 

down tube 

p > concave, i.e., water 

side 
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(b) Parallel plates 

 

For two parallel plates 2R apart with span b: 

 

Surface Tension Force = Weight of fluid = 𝛾∀ 

 

2bσcos θ = ρgh2Rb  ⇒ ℎ =
𝜎 𝑐𝑜𝑠 𝜃

𝛾𝑅
 

 

(c) Pressure jump (hydrostatic pressure variation: 

Chapter 2) 

wetting-non     

   wetting

h

h

ppppzczp
dz

dp
atmhzhzatatm







=

−=

−=+−=+−=−=
==

 

 

For general interface: 

 
h>0 (wetting): 

 

𝛥𝑝 = 𝜎(𝑅1
−1 + 𝑅2

−1) = −𝛾ℎ < 0 ⇒ 𝑝𝑤𝑎𝑡𝑒𝑟 < 𝑝𝑎𝑖𝑟 ⇒ concave shape 

 

h<0 (non-wetting): 

 

𝛥𝑝 = 𝜎(𝑅1
−1 + 𝑅2

−1) = 𝛾ℎ > 0 ⇒ 𝑝𝑤𝑎𝑡𝑒𝑟 > 𝑝𝑎𝑖𝑟 ⇒ convex shape 
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(3) Transformation liquid jet into droplets 

 

 
Figure 1.  Wave breaking around a wedge-shaped bow. 

 

 
Figure 2. Wave profile of the wedge flow. 

 

(4)  Binding of wetted granular material such as sand 

 

(5)  Capillary waves 

 

Like a stretched membrane (or string) waves, surface 

tension acts as restoring force resulting in interfacial waves 

called capillary waves. 

Movie Wedge Wave 

https://www.youtube.com/watch?v=JMQNeOVggEY
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Cavitation: 

 

When the pressure in liquids falls below the vapor pressure, 

it will evaporate (i.e., changes phase and becomes a gas).  

If due to temperature changes alone, the process is called 

boiling, whereas if due to liquid velocity, the process is 

called cavitation.   

22/1 U

pp
Ca va



−
=  

Ca = Cavitation # 

pv = vapor pressure 

pa = ambient pressure 

U = characteristic velocity 

 

If the local pressure coefficient Cp ( 21/ 2

ap p
Cp

U

−
= ) falls 

below the cavitation number Ca, the liquid will cavitate. 

Ca = f (liquid/properties, T) 

 

Effects of cavitation: 

(1) erosion 

(2) vibration 

(3) noise 
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Movie: SPSC Foil 
Movie: Pitching Foil 

https://www.youtube.com/watch?v=6E9RAF2-UTg
https://www.youtube.com/watch?v=QvA56IBxMyU
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Flow Classification: 

 

(1) Spatial dimensions: 1D, 2D, 3D 

(2) Steady or unsteady: 0=




t
 or 0





t
 

(3) Compressible (ρ  constant) or incompressible (ρ = 

constant)     

(4) Inviscid or viscous:  μ = 0 or μ   0. 

(5) Rotational or irrotational: ω   0 or ω = 0. 

(6) Inviscid/Irrotational: potential flow 

(7) Viscous, laminar, or turbulent: Retrans 

(8) Viscous, low Re:  Stokes flow 

(9) Viscous, slender body, high Re external flow:  

boundary layer 

(10)  Etc. 

 

Depending on flow classification, different approximations 

can be made to exact governing differential equations 

resulting in different forms of approximate equations and 

analysis techniques. 
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Flow Analysis Techniques: 

 

 
 

In addition, AFD and CFD (high fidelity) current research 

involves multi-fidelity and ML&AI approaches. 

“Reality” 

Fluids Eng. Systems Components Idealized 

EFD 

 

Mathematical Physics Problem Formulation 

 

AFD 

 

CFD 

 


