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Chapter 8.6 Advanced Methods 

 

 

 
LOUIS LANDWEBER, professor emeritus of mechanics and hydraulics, 

Iowa Institute of Hydraulic Research (IIHR)– Hydroscience and Engineering, 

passed away January 20, 1998, at the age of 86. A distinguished and widely 

recognized leader and a theoretician whose insights extended well beyond the 

ordinary, he was the “Father of Ship Hydrodynamics” at IIHR, with a career 

that spanned decades of the 20th century critical to the development of naval 

ship hydrodynamics. 
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Method of Images for Multiple Boundaries: 
 

The method can be extended for multiple boundaries by using successive images.  

 

(1) For example, the solution for a source equally spaced between two parallel planes 
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Method of Images Spherical and Curvilinear Boundaries:  

 

The results for plane boundaries are obtained from consideration of symmetry. For 

spherical and circular boundaries, image systems can be determined from the Sphere & 

Circle Theorems, respectively.  For example: 

 

Flow field Image System 

Source of strength M at c outside sphere 

of radius a, c>a 
Sources of strength 

c
ma at 

c
a 2

and line 

sink of strength
a

m extending from center 

of sphere to 
c

a 2
 

Dipole of strength  at l outside sphere 

of radius a, l>a 
dipole of strength 

l
a 3

− at 
l

a2

−  

Source of strength m at b outside circle of 

radius a, b>a 
equal source at 

b
a 2

and sink of same 

strength at the center of the circle 
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(2) As a second example of the method of successive images for multiple boundaries 

consider two spheres A and B moving along a line through their centers at velocities U1 

and U2, respectively: 

 

 
 

 

Consider the kinematic BC for A: 

( ) ( ) 2222
, azyytxtxF −++−=  

1 1
ˆˆ ˆ0  or cosR R R

DF
V e U k e U

Dt
 =   =  =  

where 
2

cos
R

 


= − , 
3

3

2
cos

2
R

Ua

R
 


= −   = for single sphere 

 

Similarly for B→ 2 cos 'R U =  

 

 

This suggests the potential in the form 

 

1 1 2 2U U  = +  

 

where 1 and 2 both satisfy the Laplace equation and the boundary condition: 

 

1 1

'

cos ,  0
'R a R bR R

 


= =

    
= =   

    
     (*) 

 

2 2

'

0,  cos '
'R a R bR R

 


= =

    
= =   

    

    (**) 

 

1 = potential when sphere A moves with unit velocity towards B, with B at rest 

2 = potential when sphere B moves with unit velocity towards A, with A at rest 
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If B were absent. 
3

0
1 2 2

cos cos
2

a

R R
  


= − = − , 

2

3

0

a
=  

 

but this does not satisfy the second condition in (*). To satisfy this, we introduce the image 

of 0 in B, which is a doublet 1 directed along BA at A1, the inverse point of A with 

respect to B.  This image requires an image 2 at A2, the inverse of A1 with respect to A, 

and so on. Thus we have an infinite series of images A1, A2, … of strengths 1 , 2 , 3 etc. 

where the odd suffixes refer to points within B and the even to points within A. 
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where  1  = image dipole strength, 0  = dipole strength 
3

3

sistance

radius  

0 1 1 2 2
1 2 2 2

1 2

cos cos cos

R R R

  


  
= − − − − with a similar development procedure for 2. 

Although exact, this solution is of unwieldy form. Let’s investigate the possibility of an 

approximate solution which is valid for large c (i.e. large separation distance) 
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  2
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By the binomial theorem valid for 1x  
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After collecting terms in powers of  , where the Pn are Legendre functions of the first 

kind (i.e. Legendre polynomials which are Legendre functions of the first kind of order 

zero). Thus, 

( ) ( )

( ) ( )

2

1 22 3

2

1 22 3
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: cos cos

'
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: cos cos

'
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Next, consider a doublet of strength   at A 
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Going back to the two sphere problem. If B were absent 
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using the above expression for the origin at B and near B 
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( )33 3
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which can be cancelled by adding a term to the first approximation, i.e. 
3 3 3
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1 cos 1 cos '

2 2 '
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to confirm this 
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Similarly, the solution for f2 is  
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These approximate solutions are converted to ( )3c− . 

 

To find the kinetic energy of the fluid, we have 

1

2
A B

n n

S S

K dS dS  
 

= − + 
  
   

2 2

11 1 12 1 2 22 2

1

2 2
A B

n

S S

K A U A U U A U dS



+

 = + + = −    

1
11 1 A

A

A dS
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4 4
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Complex variable and conformal mapping 
 

This method provides a very powerful method for solving 2-D flow problems. Although 

the method can be extended for arbitrary geometries, other techniques are equally useful. 

Thus, the greatest application is for getting simple flow geometries for which it provides 

closed form analytic solution which provides basic solutions and can be used to validate 

numerical methods.  

 

Function of a complex variable 

 

Conformal mapping relies entirely on complex mathematics. Therefore, a brief review is 

undertaken at this point.  

 

A complex number z is a sum of a real and imaginary part;  z =  real + i imaginary 

 

The term i, refers to the complex number   

 

so that;   

 

Complex numbers can be presented in a graphical format. If the real portion of a complex 

number is taken as the abscissa, and the imaginary portion as the ordinate, a two-

dimensional plane is formed. 

 

z = real +i imaginary = x + iy 

 

 

 

 

 

-A complex number can be written in polar 

form using Euler's equation; 

 

 z = x + iy  =  rei  =  r(cos  + isin) 

 

Where:   r2  =  x2  +  y2 

 

- Complex multiplication: z1z2 = (x1+iy1)(x2+iy2) = (x1x2 - y1y2) + i(x1y2 + y1x2) 

- Conjugate:  z = x + iy   z x iy= −
22. yxzz +=  

-Complex function: 

w(z)  = f(z)=  (x,y) +  i (x,y) 
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1,,1,1
432
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If function w(z) is differentiable for all values of z in a region of z plane is said to be regular 

and analytic in that region. Since a complex function relates two planes, a point can be 

approached along an infinite number of paths, and thus, in order to define a unique 

derivative f(z) must be independent of path. 

 

 

1 1 1

1 1

1

1 1 1

( )
1( 0) :

: ( , ) ( , )

x x

w w i iw
PP y

z z z x x

dw
i

dz

Note w x x y i x x y

   




 

   

− + − +
= = =

− −

 = +

= + + +

 

2 2 2

2 2

2

( )
2( 0) :

( )

y y

w w i iw
PP x

z z z i y y

dw
i

dz

   




 

− + − +
= = =

− −

 = − +

 

For 
dz

dw
 to be unique and independent of path: 

x y y xand   = − =    Cauchy Riemann Eq. 

 

Recall that the velocity potential and stream function were shown to satisfy this relationship 

as a result of their othogonality. Thus, complex function  iw +=  represents 2-D flows. 

xx yx yy xy   = = −  i.e.  0=+ yyxx   and similarly, for   Therefore if analytic and 

regular also harmonic, i.e., satisfy Laplace equation. 
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Application to potential flow 
 

( )w z i = +  Complex potential where  : velocity potential,  : stream function 

( ) i

x x r

dw
i u iv u iu e

dz



  −= + = − = −  Complex velocity 

 
 

)(''   += ii reer where rr ='
(magnification) and  +=' (rotation) 

→Triangle about z0 is transformed into a similar triangle in the ζ-plane which is magnified 

and rotated. 

 

Implication: 

 

-Angles are preserved between the intersections of any two lines in the physical domain 

and in the mapped domain. 

 

-The mapping is one-to-one, so that to each point in the physical domain, there is one and 

only one corresponding point in the mapped domain. 

 

For these reasons, such transformations are called conformal. 
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Usually the flow-field solution in the ζ-plane is known: 

 
),(),()(  += iW  

Then 

( )( ) ),(),()( yxiyxzfWzw  +==  or ==   &  

 

Conformal mapping 
 

The real power of the use of complex variables for flow analysis is through the application 

of conformal mapping: techniques whereby a complicated geometry in the physical z-

domain is mapped onto a simple geometry in the ζ-plane (circular cylinder) for which the 

flow-field solution is known. The flow-field solution in the z-plane is obtained by relating 

the ζ-plane solution to the z-plane through the conformal transformation ζ=f(z) (or inverse 

mapping z=g(ζ)). 

 

Before considering the application of the technique, we shall review some of the more 

important properties and theorems associated with it. 

 

Consider the transformation, 

ζ=f(z) where f(z) is analytic at a regular point Z0 where f’(z0)≠0 

δζ= f’(z0) δz 
''  ier= , iz re  = , ( )  iezf =0

'
 

 
→The streamlines and equipotential lines of the ζ-plane (Φ, Ψ) become the streamlines of 

equipotential lines of the z-plane (, ψ). 
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→

2 2

2 2

0

0

z

z





 

 

 =  =

 =  =
 i.e. Laplace equation in the z-plane transforms into Laplace equation is 

the ζ-plane. 

The complex velocities in each plane are also simply related 

 

'( )
dw dw d dw

f z
dz d dz d



 
= =  

 

( ) ( ) '( ) ( ( ))
dw dW

z u iv U iV f z f z
dz d




= − = − = =  

 

i.e. velocities in two planes are proportional. 

 

Two independent theorems concerning conformal transformations are: 

(1) Closed curves map to closed curves 

(2) Rieman mapping theorem: an arbitrary closed profile can be mapped onto the unit 

circle. 

 

More theorems are given and discussed in AMF Section 43. Note that these are for the 

interior problems, but are equally valid for the exterior problems through the inversion 

mapping. 

 

Many transformations have been investigated and are compiled in handbooks. The AMF 

contains many examples: 

1) Elementary transformations: 

 a) linear: 0 , −
+

+
= bcad

dcz

baz
w  

 b) corner flow: nAzw =  

 c) Jowkowsky: 


2cw +=  

 d) exponential: new =  

 e) szw = , s irational 

 

2) Flow field for specific geometries 

 a) circle theorem 

 b) flat plate 

 c) circular arc 

 d) ellipse 

 e) Jowkowski foils 

 f) ogive (two circular areas) 

 g) Thin foil theory [solutions by mapping flat plate with thin foil BC onto unit 

circle] 

 h) multiple bodies 

 

3) Schwarz-Cristoffel mapping 
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4) Free-streamline theory 

 

The techniques of conformal mapping are best learned through their applications. Here we 

shall consider corner flow.  

 

A simple example: Corner flow 

 

1. In ζ-plane, let  =)(W  i.e. uniform stream 

2. Say→ 


 zzf == )(  

3. 


zzfWzw == ))(()(  i.e. corner flow 

Note that 1-3 are unit uniform stream. 

 

 

 niURURUzzw nnn sincos)( +== , where iz Re=  

i.e.  nURn cos= ,  nUR n sin=  

 nUR n sin= =const.=streamlines 

 nURn cos= =const.=equipotentials 

 

1 1 ( 1) 1 1( cos sin )

( )

n n i n n n i

i

r

dw dW d
nUz nUR e nUR n inUR n e

dz d dz

u iu e

 






 



− − − − − −

−

= = = = +

= −

 





 nnURu

nnURu

n

n

r

sin

cos

1

1

−

−

−=

=
 

 

( )
n2

0   → 0ru , 0u  

( ) ( )
nn

 
2

→ 0ru , 0u  

i.e. 
nUzzw =)(  

 

represents corner flow: n=1→uniform stream, n=2→90° corner 
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Introduction to Surface Singularity methods 

(also known as Boundary Integral and Panels Methods) 
 

Next, we consider the solution of the potential flow problem for an arbitrary geometry. 

Consider the BVP for a body of arbitrary geometry fixed in a uniform stream of an inviscid, 

incompressible, and irrotational fluid. 

 

 
 

The surface singularity method is founded on the symmetric form of Greens theorem and 

what is known as Greens function. 

 

( )2 2

B S
V S S S S

G
G G dV G dS

n n
= + +

  
  −  = −  

  
     (1) 

 

where Φ and G are any two scalar field in V (control volume bounded by s infinity S body 

and S inserted to render the domain simply connected) and for our application. 

Φ= velocity potential 

G= Green’s function 

 

Say,  

)( 0

2 xxG −−=   in V+V’ (i.e. entire domain) where δ is the Dirac delta function. 

G→0 on S∞  

 

Solution for G (obtained Fourier Transforms) is: rG ln= , 
0xxr −= , i.e. elementary 2-

D source at 0xx = of unit strength, and (1) becomes 

 
















−




=

= BSS

dS
n

G

n
G  
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First term in integrand represents source distribution and second term dipole distribution, 

which can be transformed to vortex distribution using integration by parts. By extending 

the definition of Φ into V’ it can be shown that Φ can be represented by distributions of 

sources, dipoles or vortices, i.e. 

 




=
= BSS

GdS : source distribution,  : source strength 

or 







=

= BSS

dS
n

G
 : dipole distribution,  : dipole strength 

 

Also, it can be shown that a source distribution representation can only be used to represent 

the flow for a non-lifting body; that is, for lifting flow dipole or vortex distributions must 

be used. 

 

As this stage, let’s consider the solution of the flow about a non-lifting body of arbitrary 

geometry fixed in a uniform stream. Note that since G→0 on S∞ Φ already satisfy the 

condition S∞. The remaining condition, i.e. the condition is a stream surface is used to 

determine the source distribution strength. 

 

Consider a source distribution method for representing non-lifting flow around a body of 

arbitrary geometry. 

 

 
 

V U = +  : total velocity 

 

U : uniform stream,  : perturbation potential due to presence of body 

 )ˆsinˆ(cos jiUU  +=  : note that for non-lifting flow  must be zero (i.e. for a 

symmetric foil 0= or for cambered filed oLift = ) 

ln
2

BS

K
rds


=  : source distribution on body surface 
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Now, K is determined from the body boundary condition. 

0= nV  i.e. 0U n n  +   =  or U n
n





= − 


 

i.e. normal velocity induced by sources must cancel uniform stream→

nUrds
K

n
BS

−=



 ln

2
 

This singular integral equation for K is solved by descretizing the surface into a number of 

panels over which K is assumed constant, i.e. we write 

 
 no. of panels

1

ln
2

M

ij i i
Si

ji

Kj
r dS U n

n 

=



=


= − 


  , i=1,M, j=1,M 

 

where  ( ) ( )22

jijiij zzxxr −+−= =distance from ith panel control point to jr = position 

vector along jth panel. 

 

Note that the integral equation is singular since 

i

ij

ij

ij

i n

r

r
r

n 


=



 1
ln  

at for 0=ijr this integral blows up; that is, when i=j and we trying to determine the 

contribution of the panel to its own source strength. Special care must be taken. It can be 

shown that the limit does exist at the integral equation can be written 

 

ln
2 2j i

i i
ij i

S S
i

K K
r dS
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=

 −=



+
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i S
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==




2

1111
 

where ( ) ( )222

jijiij zzxxr −+−=  
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Consider the ith panel 

 

jiS iii
ˆsinˆcos  += , jijSn iiii

ˆcosˆsinˆ  +−==  

ixin sin−= , izin cos=  

nUrds
K

n
BS

−=



 ln

2
 

 

ijj SSrr += 0 , :0jr origin of jth panel coordinate system, iSS : distance along jth panel 
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V U = +   

ln
2

BS

K
rds


=   

0= nV → nUrds
K

n
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 ln

2
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 −−=−=
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1
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244 ABq −=  

12 ln
2

1
ij AII −=  
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  ( )iiii UURHS  −−=+−−=  sincossinsincos  
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i

M

ij
i

i

ji RHSI
KK

=+ 

=1 22 

: Matrix equation for Ki and can be solved using Standard 

methods such as Gauss-Siedel Iteration. 

In order to evaluate Ij, we make the substitution 

xjjjj

xjjjj

SSzz

SSxx

+=

+=

0

0
→ jjjj SSrr += 0  

 

where Sj= distance along the jth panel  ij lS 0  

jxizj

jzixj

nS

nS
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==

==
 

 

After substitution, Ij becomes 
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i.e. q>0 and as a result, 
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where BASS ji ++= 22
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which can be solved by standard techniques for linear systems of equations with Gauss-

Siedel Iteration. 

 

Once Ki is known,  
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