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Chapter 8.6 Advanced Methods

HYDRODYNAMICS
SIR HORACE LAMB

SIR HORACE LAMB

born in Stockport, land in 1849, edu-
inchester, and then Trinity College, Cam-
bridge University, where he studied with professors such as J. Clerk
Maxwell and G. G. Stokes. After his graduation, he lectured at Trinity
(1822-1825) and then moved to Adelaide, Austraila, to bacome Profes-
sor of Mathematics.

After ten years, he returned to Owens College (part of Victoria
University of Manchester) as Professor of Pure Mathematics; he
remained until 1920,

P

h areas encompassed tides, waves, and
el mathematics.

A

Professor Lamb was noted for his excellent teaching and writing
abilities. In response to a student tribute on the occasion of his eightieth

birthday, he replied: “I did try to make things clear, first to myself...and

then to my students, and somehow make these dry bones live.”

LOUIS LANDWEBER, professor emeritus of mechanics and hy_draul_ics,
lowa Institute of Hydraulic Research (I1IHR)— Hydroscie;nce _and Engineering,
passed away January 20, 1998, at the age of 86. A distinguished and widely
recognized leader and a theoretician whose insights extended well 'beyond the
ordinary, he was the “Father of Ship Hydrodynamics™ at IIHR, with a career
that spanned decades of the 20th century critical to the development of naval

ship hydrodynamics.
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Method of Images for Multiple Boundaries:

The method can be extended for multiple boundaries by using successive images.

1) For example, the solution for a source equally spaced between two parallel planes
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w(z)=m > [In[z—(4n+a)]+In[z—(4n+2-a)]]
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=m[n(z-a)+In(z—2+a)+In(z—4+a)+In(z-6+a)+In(z+4—a)+In(z+2+a)+..
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Method of Images Spherical and Curvilinear Boundaries:

The results for plane boundaries are obtained from consideration of symmetry. For
spherical and circular boundaries, image systems can be determined from the Sphere &
Circle Theorems, respectively. For example:

Flow field Image System

Source of strength M at ¢ outside sphere | Sources of strength mzy at a7 and line
of radius a, c>a c ¢

: m .
sink of strength A extending from center

of sphere to a%

Dipole of strength 4« at | outside sphere . asl/ )
of radius a, I>a dipole of strength | at _a/

Source of strength m at b outside circle of | equal source at a% and sink of same
radius a, b>a

strength at the center of the circle
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2 As a second example of the method of successive images for multiple boundaries
consider two spheres A and B moving along a line through their centers at velocities U
and Uy, respectively:

Consider the kinematic BC for A:
F(xt)=(x-yt) +y*+2° -a’

S =0=V —UK-6, or ¢, =U, cosv

A 3 .
where ¢ = _?COSV’ b =_%COSV = A :UTafor single sphere

Similarly for B> ¢, =U, C0sV'

This suggests the potential in the form
p=Up+U,p,

where ¢1 and ¢2 both satisfy the Laplace equation and the boundary condition:

(%j =Cosv, (%j =0 *)
R Jpa OR" g

(%j =0, (a%j =cosv' (**)
R Jr_a OR" )y

¢1 = potential when sphere A moves with unit velocity towards B, with B at rest
¢2 = potential when sphere B moves with unit velocity towards A, with A at rest
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If B were absent.
3 A a.3
¢ =— SR cosv = —R—gcosv, A, =—

but this does not satisfy the second condition in (*). To satisfy this, we introduce the image
of Ayin B, which is a doublet Aldirected along BA at Ay, the inverse point of A with

respect to B. This image requires an image Azat Az, the inverse of A1 with respect to A,

and so on. Thus we have an infinite series of images A1, A, ... of strengths A;, A, A etc.
where the odd suffixes refer to points within B and the even to points within A.

Let f.=AA &AB=c

c T
b3 a3 b3
- 2 A=A -— | A=A ——m |
A, AO( C3J’ 2 1[ flgj, 3 2[ (C—f2)3 5

where A; = image dipole strength, A, = dipole strength X @Lusss
sistance

A,cosv A cosy; A, cosv, ) .
¢ =~ S — T~ >— —-.-with a similar development procedure for ¢s.
R R R,
Although exact, this solution is of unwieldy form. Let’s investigate the possibility of an
approximate solution which is valid for large c (i.e. large separation distance)

7
T [5+
A,

(Y <

2
R?*=R*+c*—2crcosy = Rz(l—z—RCCOSv+%]

R' c 2

1 1
2 |77 2 |
i=l 1—23(:osv+c—2 :1 1—ZEcosv+R—
R R R c c

Considering the former representation first defining ., = % and U=COSv
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%:%[Z].—Zu,u+,uz]i

By the binomial theorem valid for [X| <1
1 _ 1-3-(2n-1
(1—X) 2 =y +a1x+a2X2 +a3X3+"" Q, =1 and a, = 2.51.2n )
Hence if [2up - u* <1

1

[ ]7E =0 +a1(2uﬂ_ﬂ2)+ 0{2( )2 tee-= Po(u)"‘ Pl(u)/"'*' Pz(u)ﬂz

After collecting terms in powers of £, where the P, are Legendre functions of the first

kind (i.e. Legendre polynomials which are Legendre functions of the first kind of order
zero). Thus,

1 R R?

R<C:%=E+C—2Pl(c05v)+c—3P2(c05v)+~~
2
R>C:%=%+%Pl(c05v)+%P2(c05v)+---

Next, consider a doublet of strength A at A

4 _Boosa -A(Rcosv—c) NG 1
- R? 3T T 1
R (R2+c2—2cRc03v)2 o (R2+c2—20R005v)2
Thus,
_ 2RP (cos 3R?P, (cos ]
R<c:¢=AC—28a:A{i2+ 1(3 V)+ d V)+---
R' c c cv

2

R>c:¢=—A{%Pl(cosv)+%Pz(cosv)+%P3(cosv)+---

Going back to the two sphere problem. If B were absent

R
using the above expression for the origin at B and near B (? < 1), R>R’, v o>V
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a’ 1a® a’R'B(cosv)
= CoSV =—| = —+ +--
¢ - 2R? 2 ¢? c?
—a®cosv
o=+

which can be cancelled by adding a term to the first approximation, i.e.
p __la’cosv 1a’h’cosv’
2 R? 2 ¢ R*?

to confirm this
1a® a3R'cosv' 1 a’b® cosv

¢l=_§?_ c? 2 ¢ R

a¢1(R b)__a cosv+ab cosv 0+ hot

c? ¢ R

Similarly, the solution for f2 is

1 bécosv 1ab cosv

¢2:_§ R 2 ¢ R?

These approximate solutions are converted to O(c“") :

To find the kinetic energy of the fluid, we have

K ——%pL[¢¢ndS +S{¢¢nds}

— (AU +AUL, + AU ]=-2 [ g

SA+SB
0 0 P
Au=p 4 G 85,. A= 08, A= Thas, =—pf4 b,
A on 5 On
where dS = 272'R2 sinodo
2 2 3p3
Ay = §7Z;a3p' A, = ﬂa P Py = '

KZEM'1U12 MUU +1
4 c? 4

M ', U 2: using the approximate form of the potentials

Where% M '1U12,% M ', UZ: masses of liquid displaced by sphere.
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Complex variable and conformal mapping

This method provides a very powerful method for solving 2-D flow problems. Although
the method can be extended for arbitrary geometries, other techniques are equally useful.
Thus, the greatest application is for getting simple flow geometries for which it provides
closed form analytic solution which provides basic solutions and can be used to validate
numerical methods.

Function of a complex variable

Conformal mapping relies entirely on complex mathematics. Therefore, a brief review is
undertaken at this point.

A complex number z is a sum of a real and imaginary part; z = real + i imaginary

The term i, refers to the complex number i = J-1

50 that: i=vJ-1, i’=-1 i*=-i, i'=1

Complex numbers can be presented in a graphical format. If the real portion of a complex
number is taken as the abscissa, and the imaginary portion as the ordinate, a two-

dimensional plane is formed.

z = real +i imaginary = x + iy 1 y, imaginary

X, real

-A complex number can be written in polar
form using Euler's equation;

z=x+iy = re' = r(cos@ + isind)
Where: rr=x2+y?

- Complex multiplication: z1zo = (X1 +iy1)(Xo+iy2) = (X1X2 - Y1y2) + i(X1y2 + Y1X2)

_ i i0, _ i(6+6;)
= net-re”? = nr-e™

- Conjugate: z=x+iy Z=x—iyZl= x* + y2
-Complex function:
w(z) =f(2)= ¢ (xy) + iy (xy)
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If function w(z) is differentiable for all values of z in a region of z plane is said to be regular
and analytic in that region. Since a complex function relates two planes, a point can be
approached along an infinite number of paths, and thus, in order to define a unique
derivative f(z) must be independent of path.

-

\—a e

\ Ty,
4 —y—
“ | X
PPL(SY =0): 55—":: VZVl:‘:’Jl*'V’;l‘_(f“V’)
=+,

Note: w, =@ (X+ X, y) +iy, (X+IX,Y)
@: W,-W_ ¢, +iy, — (P +iy)

PP2(ox=0):

o1 7,~1 i(y,—)
dw :
=— =-lg, +y,
z 2
For ?j_w to be unique and independent of path:
4

¢, =y,and—@ =y, Cauchy Riemann Eq.

Recall that the velocity potential and stream function were shown to satisfy this relationship
as a result of their othogonality. Thus, complex function w = ¢ + iy represents 2-D flows.

o=V Py ="V, ie. @, +4, =0 and similarly, for y. Therefore if analytic and
regular also harmonic, i.e., satisfy Laplace equation.
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Application to potential flow

w(z) = ¢ +iy Complex potential where & : velocity potential, y : stream function

aw _ ¢ +iy, =u—iv=(u, —iu,)e " Complex velocity

dz
{ TABLE 1 j
FLOWS CORRESFONDING TO VARIOTS COMPLEX POTENTIALS A \f"'m“”‘h
. Coniiguration o v+ iy - ‘,‘;'.“":EMF
1. Uniform stream in the direction & Us g~ .
M P ‘(\13_:-43:!:*_
2. Souree of strength m at point 5 %Ié min(s =g ~ PR
S /8
/__ 1. Vortex of strength k at point £ —ikin(z — z) l uﬁ‘” e
) 4. Doublet of strength & ¢ ~deine \ _i_n“‘ o
o / 5. Flow in a corner of angle r/n g& As ____‘}}L;_”‘\W“*"k
i 6. Flow about a half body "'"_C-_ Ustmloz -_i:’xf -~
—_
! . i, o
....:;l_,-.._._._.__ S 4 m:;m:i:thr“hum @" A Ll'(l +7) +iklng er:_ ?'Iur —
! . .
L - e 4 b
H 9. Line ex near a wall ik g ——— =
j - e e @‘# TR T e
Y - — s S
\ - 10. Source at the ceater of a channel %é ahun&: — S‘J‘ ’ﬂﬂ?%
N Tor e
| \963;3w= wilnt = ""’\l{&af 5 (8 2 =ves
W= Wiz = e~ o =0
Lig i(6+a) t cpe . . .
re- =pre where I' = oI (magnification) and &' = @ + « (rotation)

—>Triangle about zo is transformed into a similar triangle in the {-plane which is magnified
and rotated.

Implication:

-Angles are preserved between the intersections of any two lines in the physical domain
and in the mapped domain.

-The mapping is one-to-one, so that to each point in the physical domain, there is one and
only one corresponding point in the mapped domain.

For these reasons, such transformations are called conformal.
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Usually the flow-field solution in the {-plane is known:

W(g) =D&, n) +1¥ (&, 77)
Then

w(z) =W(F(2))= g% V) +iv(Xy) or p=d &y =
Conformal mapping

The real power of the use of complex variables for flow analysis is through the application
of conformal mapping: techniques whereby a complicated geometry in the physical z-
domain is mapped onto a simple geometry in the {-plane (circular cylinder) for which the
flow-field solution is known. The flow-field solution in the z-plane is obtained by relating
the C-plane solution to the z-plane through the conformal transformation {=f(z) (or inverse

mapping z=g(C)).

Before considering the application of the technique, we shall review some of the more
important properties and theorems associated with it.

Consider the transformation,

{=f(z) where f(z) is analytic at a regular point Zo where f*(zo)#0
0= 1(20) 6z

5g: r|ell9 ,52 _ reig, f I(ZO):mm

Jany T
1.~ U %
2~ e e plea,

—>The streamlines and equipotential lines of the {-plane (®, ¥) become the streamlines of
equipotential lines of the z-plane (¢, v).

{:r_ e - AK’—@ _\\
' }’f \ \ e %, S\ ~
s N 28
! J \ —
 — 7
S e
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Vip=Vi$=0
) ) i.e. Laplace equation in the z-plane transforms into Laplace equation is
Viy =V =0
the C-plane.

The complex velocities in each plane are also simply related

dw _dwdg _dw f'(2)
dz dg dz dg

dw . ; ' _dﬂ =
E(z):u—lv:(U—N)f (Z)_d;’ (¢=1(2)

i.e. velocities in two planes are proportional.

Two independent theorems concerning conformal transformations are:
(1) Closed curves map to closed curves
(2) Rieman mapping theorem: an arbitrary closed profile can be mapped onto the unit
circle.

More theorems are given and discussed in AMF Section 43. Note that these are for the
interior problems, but are equally valid for the exterior problems through the inversion

mapping.

Many transformations have been investigated and are compiled in handbooks. The AMF
contains many examples:

1) Elementary transformations:

az+b,ad—bc¢0

cz+d

b) corner flow: w= Az"

c) Jowkowsky: W=¢ + C%

d) exponential: w=-e"
e) w=z®,sirational

a) linear: w=

2) Flow field for specific geometries

a) circle theorem

b) flat plate

¢) circular arc

d) ellipse

e) Jowkowski foils

f) ogive (two circular areas)

g) Thin foil theory [solutions by mapping flat plate with thin foil BC onto unit
circle]

h) multiple bodies

3) Schwarz-Cristoffel mapping
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4) Free-streamline theory

The techniques of conformal mapping are best learned through their applications. Here we
shall consider corner flow.

A simple example: Corner flow
1. In {-plane, let W (¢) = ¢ i.e. uniform stream

2.Say>c=f(2)=27

3. W(z)=W(f(2))= z% i.e. corner flow
Note that 1-3 are unit uniform stream.

X
P o
fff% - - 1 A
/ /'../ . A .
A >
28 J /b > >

S~ plea
L

2=y
w(z) =Uz" =UR" cos@ +iUR"sin n@ , where z = Re'
ie. p=UR"cosnd, v =UR"sinnd
 =UR" sin N =const.=streamlines

¢ =UR" cosnd =const.=equipotentials

Z—W = (jjﬂ(;—g =nUz"" = nUR" '™’ = (NUR"" cosn@+inUR"*sin ng)e "
z  d¢ dz
= (ur _iue)e*ié’

u, =nUR"*cosnd
u, =-NUR"*sinn@

0<9<(%n)éur >0,u,<0

(%n)<g<(%)eur <0,u,<0

ie. w(z)=Uz"

represents corner flow: n=1->uniform stream, n=2->90° corner
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Introduction to Surface Singularity methods
(also known as Boundary Integral and Panels Methods)

Next, we consider the solution of the potential flow problem for an arbitrary geometry.
Consider the BVP for a body of arbitrary geometry fixed in a uniform stream of an inviscid,
incompressible, and irrotational fluid.

P . pA N,
qtﬁ =0 w ¥ J N
! \
i . s « |
Leh=o oSy r Se o= |
‘ :.i i T =V W'Efﬁlﬂ%\r
> e R
1 | - Bl

L]
"
K
H

1
it

N\ Shemkr ok oy s 1 S

The surface singularity method is founded on the symmetric form of Greens theorem and
what is known as Greens function.

[(eVio-aviG)dv = (Gaﬂ)—q)@] ds (1)
v D 8=5,+85+Ss an an

where ® and G are any two scalar field in V (control volume bounded by s infinity S body
and S inserted to render the domain simply connected) and for our application.

®= velocity potential

G= Green’s function

Say,
V?G = —6(X—X,) in V+V’ (i.e. entire domain) where  is the Dirac delta function.
G->0o0n S

Solution for G (obtained Fourier Transforms) is: G = In|r|, |r| = [x—x,, i.e. elementary 2-

D source at X = X, of unit strength, and (1) becomes

o= | [Gaﬂ)-@@jds
Tiss, an on
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First term in integrand represents source distribution and second term dipole distribution,
which can be transformed to vortex distribution using integration by parts. By extending
the definition of @ into V’ it can be shown that ® can be represented by distributions of
sources, dipoles or vortices, i.e.

O = foGdS : source distribution, O : source strength

> s=Sg
or

D= I Aﬁds - dipole distribution, A : dipole strength
355, on

Also, it can be shown that a source distribution representation can only be used to represent
the flow for a non-lifting body; that is, for lifting flow dipole or vortex distributions must
be used.

As this stage, let’s consider the solution of the flow about a non-lifting body of arbitrary
geometry fixed in a uniform stream. Note that since G=>0 on Soo @ already satisfy the
condition Sco. The remaining condition, i.e. the condition is a stream surface is used to
determine the source distribution strength.

Consider a source distribution method for representing non-lifting flow around a body of
arbitrary geometry.

V =U_+V¢: total velocity

UOO > uniform stream, V ¢ : perturbation potential due to presence of body
U, =U_(cosal +sin¢j): note that for non-lifting flow I" must be zero (i.e. for a

symmetric foil o =0or for cambered filed @ = ;)

o= J’ 2£ In rds : source distribution on body surface
VA
Sg



058:0160 Chapter 8.7
Professor Fred Stern  Fall 2022 16

Now, K is determined from the body boundary condition.
V-n=0ie. U,-n+Vg-n=0 or a¢_—Uw'D

i.e. normal velocity induced by sources must cancel uniform stream->

i ﬁIn rds_—U
2

on ¢

Th|s smgular integral equation for K is solved by descretizing the surface into a number of
panels over which K is assumed constant, i.e. we write

a M = no. of panels Kj

[ Inrds, = n . i=LM, j=1M

co

ani j=1 27[ Si —

where r, = ./(x, —x, f +(z, —z; )7 =distance from i"" panel control point to r; = position
vector along j panel.

Note that the integral equation is singular since

at for T =0this integral blows up; that is, when i=j and we trying to determine the

contribution of the panel to its own source strength. Special care must be taken. It can be
shown that the limit does exist at the integral equation can be written

KOt g K
27 On, *8ioS 2
K. 3K .1 arIJ
— 4y — as; =-U,_ -n
2 §2ﬁjr on; —= —
ji
1o 1 or; or; 1
h __:_Viri' N = nxi+_ani =— X =X N H\Zi —Z; Ny
e 100 L LT ] =URDRUEN

where r;/ =(Xi —X,-)z +(Zi _21)2



058:0160
Professor Fred Stern  Fall 2022

Chapter 8.7
17

Consider the i'" panel

a

S, =c0sG,i +sin & j, n, =S, x j=—sin & +cosé,

n, =-sing;, n, =coso,

iz
9 £In rds=-U_-n
ong 2r —
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V=U,+V¢
¢:S_[%Inrds

\1-Q=09£jilnrds:—uw-g _
8ns T —

K , N e .
lez—éfr 8nj ds, -n, =-U Lsin(a—6,), n =—sin &;i +cos 5, |
ji

Let j——”ds ~1,and RHS; =-U sin(ar~5,), then
Ty Ony
M K (Xi_xj)nxi-l_(zi_zj)nzi

i o= ds.

;2 J 5[1 (X._Xj)z"'(Zi_ZJ)Z J

L

b - sz, S
R B Y s e )

_l_

_J" (Xi XjO xi+(zi ZjO zi+Sj Xj''zi zj " xi dS
0(Xi_Xj0)2+(zi_Zj0)2+28j|._nzi(xi X )+n( )J"'SZ J

_]. CS;+D g

- 2 i
0SJ.+2ASJ.+B

where

A=—cosd;(x —x;)-sind,(z, —2,)

B=(xi—xj0)2+(zi—zjo)2

C =sin(s, - 5,)

D= —(xi - xjo)sin 0; +(zi —zjo)cos§i

i J'XJ

—_

I, = D.["idsj +Cj.liid8j - DI, +CI,, where X =57 +2AS; +B
0 X 0 X
|, depends on if g<0 or >0 where q=4B-4A’

1
=5 X - Al

Ki+ _( X)nx. (z, -2 )z. _ n = .
o ;27[] - (z—z) ds, =-U, -n, =RHS,

ji
RHS, =-U_[-cosasin d, +sin acosd,|=-U, sin(a-4,)
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Ki &K, , , :
7‘ + 22— I, = RHS, : Matrix equation for K and can be solved using Standard

i=1 &7C

j#i
methods such as Gauss-Siedel Iteration.
In order to evaluate Ij, we make the substitution

X; =Xjo+5;S
JX’%r_r +§;S;
Z; =2;0+95;5

where Sj= distance along the j" panel 0<S§; <1,
S, =N, =C0SJ;
S, =n,; =sin g,

7
After substitution, 1j becomes

B_Azz(xi X10)2+(Zi_zjo)2
[cos 5 J0) +sin 5( J0) +2€0s9;sin g, (x —xlo)(z )]

:(xi —xjo) (1—cos 61.)+(zi —zjo) (1—S|n 5j)—2

q=4(B-A%)=4x, — %, )sin 5, — (2, —zjo)cos5i]2
i.e. >0 and as a result,
I :itan*M:ltan‘ls‘—;A where \/q =2VB - A? = 2E

T T E

| = Dlj1+CBInX—AI jl}z(D—CA)I jl+%|n X[s

J

_ _ l.z+2Al. +B
=—(D cA) tan‘ll'JrA—tan‘lA PR S it Bl
E E E 2

B

where X =S7 +2AS, +B

Therefore, we can write the integral equation in the form
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1 ki ]
= B
2 2
K; |=| RHS;
ki 1
27 ! 2 |

which can be solved by standard techniques for linear systems of equations with Gauss-
Siedel Iteration.

Once Ki is known,

V=U,+V¢

And p is obtained from Bernoulli equation, i.e.

Vv

U 2

Mentioned potential flow solution only depend on is independent of flow condition, i.e.

Uoo, i.e. only is scaled
On the surface of the body Vn=0 so that

V7 : :
C, = 1—U—52 where Vg =V - S =tangential surface velocity

o0

p=1-

Vo =V®-S=U,-S+Vp-S
A =$'i+g—§=UwCOS(a—§i)+QS

where U, -S; = U., (cosai +sin of )- (cossi +sin 5, ])

P :%:i £Inrds
oS 0S¢ 2&

M K.
¢ = Ziz—;jg(ln r; )de - J=1 term is zero since source panel induces no tangential flow
j=

j=1 1. O9i
J#i

on itself, (I%(In r s, =3))
I i

Fij

where S, =€0s6;,S, =Sin g,

:{%s.ﬁszi}iz{(xi-xj)sxi -2,
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Vs ) K
C, =1- Uw V =-U_ cos(a - 5)+Z_l:2ﬂJ
i=]

% _J:ri%dsj_g[((x —x)) EZ _E;n“
S, )8, +(z = 2,0 = 5,5, 5.

i~ i

o (x —x —ss) +(z zjo—s.szj)

]

where S, =€085,,S, =sind;, (x, —x,,—S,5,f +(z,-2,,-5,S, f =S?+2AS, +B

]

ds,

(xI —X; )c0s S, +(z; —2,,)sin &, + S, (- S,;S,; = S,;S, ) €08 S, cos S, —sin 5 sin 5,
CS;+D

SZ_AS,-C AS -

D=(x —x )cos§,+(zi—zj0)sin 5,

oo_.x

1
C=—cos(s,—5,)=DI , +Cl , = Dlj1+C{EInX—AI jl}

_ | +A 12 +2Al +B
J; :(D—AC)IJ.1+EInX:D AC tant -1 — tanflé +Eln%
2 E E 2 B

D - AC = (x; — X Jeos 8, +(z, -z )sin &,
—[— (xi —xjo)cosﬁi —(zi - zjo)sin 0, K— cos(5j -0, ))
[xi —xjo)cos5i +(zi —zjo)sin 5iK—sin d;sin 6, —C0S 3, cos5j)

(xi - xjo)[coséi —sin & sin &, c0s &, —€0s &, cos’ 5i]

—

Z, zjo)[sin§ —sin 6 sin® §; —cos &, coséjsinéj]

:(. xjo)[cos5(1 cos 5) sin 6, sin & cos5j]

( zjo)[sm&(l—sm 51.)—cos§i cos5jsin5j]

= (xi jo)sin 0, [cos5i sin ¢ —sin J; coséj]—(zi —zjo)coséj [—sin 0, COSJ; +C0S 9 sin 5j]

D-AC

where = —sin(5i —0; )
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52 A Class of Airfoils Designed for
High Lift in Incompressible ¥ low
Rabert H, Lisback* _
Diouglas Aircraft Compeny, MeDanmel] Dowgles Corporation, Leag Beack, Calf.
—4.0 —— Paotential flow
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Figure 1. Cavicy and foil geometry.
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Figure 2. Moncavitaring flow unsteady prassure magnicude and phase angle.

40 =
-
LT [
ﬁ | kl-._\___‘_\_.
FRETE
=
2 L
¥ 2
L E a4
c 4
2
T
B, Therresny el 3 1
= [rer—y— o
o
mmas DM SRR MRS \\'\\
30 =
N TEFTRIENT -
—— £l
g SN AN PCTERSON [1978)
Eirusiiom (18
- = - L T T T | N T i
E & Tsazs 17 o a , 1 1 M " & ¥

Redussa raquanay, &

)

ipure 4. Cavitacion Lnedpeicm angles:
v = G =
g = L s, = 959,
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Figure 10. SPLASH hull and free=gurface panels and SPLASH and
experimental wave-height contours.
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FREE SHEAR LAYER
(VORTEY SHEET)
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Figure 4.1.6 - Flow pattern in crossflow plane
on delta wing’
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L34

CROSSFLOW PLANE

{From Marsden, Simpson, amd Rainbird, 1958)

i
Figure 4.1.5 - Surface flow wisualization on upper
surface of delta wing (a = 14%)
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{From ¥andil, Mook, & Hayfeh, 1976}

gypical solution of wake shape for
i dslta wing using Kandil, Mook, &
nayfeh model

Figure 5.2.2 =
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[Frem Hall, 1966)

Figure 4.1.3 - Vortex cores over slender delta wing
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Figure 4.1.4 = Pressure’ distrikution on upper surface
of delta wing
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