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Chapter 8.3 Superposition of Plane Flow Solutions 
 

 

 

 

 

 

 

 

 

 

Circular cylinder 

 

In the previous we derived the following equation for 

the doublet: 

 

𝜓𝐷𝑜𝑢𝑏𝑙𝑒𝑡= = −
𝜆𝑦

𝑥2 + 𝑦2
= −

𝜆 𝑠𝑖𝑛 𝜃

𝑟
 

 

When this doublet is superposed with a uniform flow 

parallel to the x- axis, we get: 

 

𝜓 = 𝑈∞𝑟 𝑠𝑖𝑛 𝜃 −
𝜆 𝑠𝑖𝑛 𝜃

𝑟
= 𝑈∞ (1 −

𝜆

𝑈∞

1

𝑟2
) 𝑟 𝑠𝑖𝑛 𝜃 

 

Where 𝜆 =doublet strength which is determined from 

the kinematic body boundary condition that the body 

surface must be a stream surface. Recall that for 

inviscid flow it is no longer possible to satisfy the no 

slip condition as a result of the neglect of viscous terms 

in the GDEs. 
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The inviscid flow body surface boundary condition is 

that the body surface is a steam surface, i.e.,  
 

𝐷𝐹

𝐷𝑡
= 0 →

𝜕𝐹

𝜕𝑡
+ 𝑉 ⋅ 𝛻𝐹 = 0 → 𝑉 ⋅ 𝑛 = −

1

|𝛻𝐹|

𝜕𝐹

𝜕𝑡
= 0   

 

Where F = r – R is the surface function and for steady 

flow 
𝜕𝐹

𝜕𝑡
= 0. 

 

Therefore, on r = R V ⋅n = 0, i.e., 𝑣𝑟 = 0|𝑟=𝑅 
 

𝑉 = 𝑣𝑟𝑒̂𝑟 + 𝑣𝜃𝑒̂𝜃,   𝑛 =
𝛻𝐹

|𝛻𝐹|
=

𝜕𝐹

𝜕𝑟
𝑒̂𝑟+

𝜕𝐹

𝜕𝜃
𝑒̂𝜃

√𝐹𝑟
2+𝐹𝜃

2
= 𝑒̂𝑟 

𝑉 ⋅ 𝑛 = 𝑣𝑟 =
1

𝑟

𝜕𝜓

𝜕𝜃
= 𝑈∞ (1 −

𝜆

𝑈∞𝑟2) 𝑐𝑜𝑠 𝜃=0 

 

⇒ 𝜆 = 𝑈∞𝑅2 
 

If we replace the constant 
𝜆

𝑈∞
 by a new constant R2, the 

above equation becomes: 
 

𝜓 = 𝑈∞ (1 −
𝑅2

𝑟2
) 𝑟 𝑠𝑖𝑛 𝜃 

 

The radial velocity is zero on all points on the circle r 

= R. That is, there can be no velocity normal to the 

circle r = R. Thus, this circle itself is a streamline.  
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The tangential component of velocity for flow over the 

circular cylinder is 

 

𝑣𝜃 = −
𝜕𝜓

𝜕𝑟
= −𝑈∞ (1 +

𝑅2

𝑟2
) 𝑠𝑖𝑛 𝜃 

 

On the surface of the cylinder r=R, we get the 

following expression for the tangential and radial 

components of velocity: 

 

𝑣𝜃 = −2𝑈∞ 𝑠𝑖𝑛 𝜃 

 

𝑣𝑟 = 0  
 

The pressure is obtained from Bernoulli's equation: 

 
𝑝

𝜌
+

1

2
(𝑣𝑟

2 + 𝑣𝜃
2) =

𝑝∞
𝜌

+
1

2
𝑈∞

2 

 

After some rearrangement we get the following non-

dimensional form: 

 

𝐶𝑝(𝑟, 𝜃) =
𝑝 − 𝑝∞
1
2

𝜌𝑈∞
2

= 1 −
𝑣𝑟

2 + 𝑣𝜃
2

𝑈∞
2
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At the surface, the only velocity component that is 

non-zero is the tangential component of velocity. 

Using 𝑣𝜃 = −2𝑈∞ 𝑠𝑖𝑛 𝜃, we get at the cylinder surface 

the following expression for the pressure coefficient:  

 

𝐶𝑝 = 1 − 4 𝑠𝑖𝑛2 𝜃 
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From the pressure coefficient we can calculate the 

fluid force on the cylinder: 
 

𝐹 = − ∫ (𝑝 − 𝑝∞)𝑛𝑑𝐴
𝐴

= −
1

2
𝜌𝑈∞

2 ∫ 𝐶𝑝(𝑅, 𝜃)𝑛𝑑𝐴
𝐴

 

 

𝑑𝐴 = (𝑅𝑑𝜃)𝑏   b=span length 
 

𝐹 = −
1

2
𝜌𝑈∞

2𝑏𝑅 ∫ (1 − 4 𝑠𝑖𝑛2 𝜃)(𝑐𝑜𝑠 𝜃 𝑖̂ + 𝑠𝑖𝑛 𝜃 𝑗̂)𝑑𝜃
2𝜋

0

 

 

𝐶𝐿 =
𝐿𝑖𝑓𝑡

1

2
𝜌𝑈∞

2𝑏𝑅
=

𝐹⋅𝑗̂
1

2
𝜌𝑈∞

2𝑏𝑅
 = − ∫ (1 − 4 𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛 𝜃 𝑑𝜃

2𝜋

0
= 0  

 

Due to symmetry of flow about x axis 
 

𝐶𝐷 =
𝐷𝑟𝑎𝑔

1

2
𝜌𝑈∞

2𝑏𝑅
=

𝐹⋅𝑖̂
1

2
𝜌𝑈∞

2𝑏𝑅
 = − ∫ (1 − 4 𝑠𝑖𝑛2 𝜃) 𝑐𝑜𝑠 𝜃 𝑑𝜃

2𝜋

0
= 0  

 

dÁlembert paradox: symmetry of flow about y axis 
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Circular cylinder with circulation 

 

The stream function associated with the flow over a 

circular cylinder, with a point vortex of strength  

placed at the cylinder center is: 

 

𝜓 = 𝑈∞𝑟 𝑠𝑖𝑛 𝜃 −
𝜆 𝑠𝑖𝑛 𝜃

𝑟
−

𝛤

2𝜋
𝑙𝑛 𝑟 

 

Recall the vortex strength K is related to the 

circulation, i.e., K= 
𝛤

2𝜋
 

 

From V⋅n=0 at r=R: 𝜆 = 𝑈∞𝑅2 

 

Therefore, 𝜓 = 𝑈∞𝑟 𝑠𝑖𝑛 𝜃 −
𝑈∞𝑅2 𝑠𝑖𝑛 𝜃

𝑟
−

𝛤

2𝜋
𝑙𝑛 𝑟 

 

The radial and tangential velocity is given by: 

 

𝑣𝑟 =
1

𝑟

𝜕𝜓

𝜕𝜃
= 𝑈∞ (1 −

𝑅2

𝑟2) 𝑐𝑜𝑠 𝜃                     

 

𝑣𝜃 = −
𝜕𝜓

𝜕𝑟
= −𝑈∞ (1 +

𝑅2

𝑟2
) 𝑠𝑖𝑛 𝜃 +

𝛤

2𝜋𝑟
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On the surface of the cylinder (r=R): 

 

𝑣𝑟 =
1

𝑟

𝜕𝜓

𝜕𝜃
= 𝑈∞ (1 −

𝑅2

𝑅2
) 𝑐𝑜𝑠 𝜃 = 0 

𝑣𝜃 = −
𝜕𝜓

𝜕𝑟
= −2𝑈∞ 𝑠𝑖𝑛 𝜃 +

𝛤

2𝜋𝑅
 

 

Consider the flow pattern as a function of Γ.   The 

stagnation points on the cylinder are given by: 

 

𝑣𝜃 = −2𝑈∞ 𝑠𝑖𝑛 𝜃 +
𝛤

2𝜋𝑅
= 0 

𝑠𝑖𝑛 𝜃 =
𝛤

4𝜋𝑈∞𝑅
=

𝐾

2𝑈∞𝑅
= 𝛽/2 

 

The location of stagnation point is function of  𝛤: 

 

2

K

U R U R


 


= =  s  (stagnation point) 

0 ( 0sin = ) 0,180 

1( 5.0sin = ) 30,150 

2 ( 1sin = ) 90 

>2( 1sin  ) Is not on the circle but 

where  0rv v= =  
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For flow patterns like above (except a), we should 

expect to have lift force in –y direction. 
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Summary of stream and potential function for 

elementary 2-D flows 
 

In Cartesian coordinates: 

𝑢 = 𝜓𝑦 = 𝜑𝑥 

𝑣 = −𝜓𝑥 = 𝜑𝑦 

In polar coordinates: 

𝑣𝑟 =
𝜕𝜑

𝜕𝑟
=

1

𝑟

𝜕𝜓

𝜕𝜃
 

𝑣𝜃 =
1

𝑟

𝜕𝜑

𝜕𝜃
= −

𝜕𝜓

𝜕𝑟
 

 

Flow      

Uniform Flow xU  yU  

Source (m>0) 

Sink (m<0) 
lnm r  m  

Doublet 
r

 cos  
r

 sin
−  

Vortex K  - lnK r  

90 Corner flow )(2/1 22 yxA −  Axy 

Solid-Body 

rotation 

Doesn’t exist 2

2

1
r  

 

These elementary solutions can be combined in such a 

way that the resulting solution can be interpreted to have 

physical significance; that is, represent the potential flow 

solution for various geometries. Also, methods for 

arbitrary geometries combine uniform stream with 

distribution of the elementary solution on the body 

surface.   
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Some combination of elementary solutions to produce 

body geometries of practical importance  

 

Body name Elemental 

combination 

Flow Patterns 

Rankine Half 

Body 

Uniform stream 

+ source 

 
Rankine Oval Uniform stream 

+ source + sink 

 
Kelvin Oval Uniform stream 

+ vortex point 

 
Circular 

Cylinder 

without 

circulation 

Uniform stream 

+ doublet 
 

Circular 

Cylinder with 

circulation 

Uniform stream 

+ doublet + 

vortex 

 
 

Keep in mind that this is the potential flow solution 

and may not well represent the real flow especially in 

region of adverse px. 
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Lift and Drag for Rotating Cylinder: 

 

𝐿/𝑏 = 𝜌𝑈∞𝛤 (clockwise rotation); therefore, 
     

𝐶𝐿 =
𝐿

1
2

𝜌𝑈∞
2(2𝑅𝑏)

=
𝛤

𝑈∞𝑅
 

 

Note: Γ = 2𝜋𝐾    and 𝑣𝜃𝑠
=  

𝐾

𝑅
 

 

⇒ 𝐶𝐿 =
2𝜋

𝑈∞

𝑣𝜃𝑠
 

 

 

 
 

Theoretical and experimental lift and drag of a 

rotating cylinder 
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Experiments have been performed that simulate the 

previous flow by rotating a circular cylinder in a 

uniform stream. In this case 𝑣𝜃 = 𝑅𝜔 which is due to 

no slip boundary condition. 

 

- Lift is quite high but not as large as theory (due to 

viscous effect i.e. flow separation) 

 

- Much larger typical airfoil same length; thus, have 

practical application 

 

- Note drag force is also fairy high 

 

 
 

Flettner (1924) used rotating cylinder to produce 

forward motion. 
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