Chapter 8.3 Superposition of Plane Flow Solutions

Circular cylinder

In the previous we derived the following equation for the doublet:

$$
\psi_{Doublet} = -\frac{\lambda y}{x^2 + y^2} = -\frac{\lambda \sin \theta}{r}
$$

When this doublet is superposed with a uniform flow parallel to the x- axis, we get:

$$
\psi = U_{\infty} r \sin \theta - \frac{\lambda \sin \theta}{r} = U_{\infty} \left(1 - \frac{\lambda}{U_{\infty}} \frac{1}{r^2} \right) r \sin \theta
$$

Where λ =doublet strength which is determined from the kinematic body boundary condition that the body surface must be a stream surface. Recall that for inviscid flow it is no longer possible to satisfy the no slip condition as a result of the neglect of viscous terms in the GDEs.

The inviscid flow body surface boundary condition is that the body surface is a steam surface, i.e.,

$$
\frac{DF}{Dt} = 0 \rightarrow \frac{\partial F}{\partial t} + \underline{V} \cdot \nabla F = 0 \rightarrow \underline{V} \cdot \underline{n} = -\frac{1}{|\nabla F|} \frac{\partial F}{\partial t} = 0
$$

Where $F = r - R$ is the surface function and for steady flow $\frac{\partial F}{\partial t}$ ∂t $= 0.$

Therefore, on $r = R V \cdot n = 0$, i.e., $v_r = 0|_{r=R}$

$$
\underline{V} = v_r \hat{e}_r + v_\theta \hat{e}_\theta, \quad \underline{n} = \frac{v_F}{|v_F|} = \frac{\frac{\partial F}{\partial r} \hat{e}_r + \frac{\partial F}{\partial \theta} \hat{e}_\theta}{\sqrt{F_r^2 + F_\theta^2}} = \hat{e}_r
$$
\n
$$
\underline{V} \cdot \underline{n} = v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = U_\infty \left(1 - \frac{\lambda}{U_\infty r^2} \right) \cos \theta = 0
$$
\n
$$
\Rightarrow \lambda = U_\infty R^2
$$

If we replace the constant $\frac{\lambda}{\mu}$ *∞* by a new constant \mathbb{R}^2 , the above equation becomes:

$$
\psi = U_{\infty} \left(1 - \frac{R^2}{r^2} \right) r \sin \theta
$$

The radial velocity is zero on all points on the circle r $=$ R. That is, there can be no velocity normal to the circle $r = R$. Thus, this circle itself is a streamline.

The tangential component of velocity for flow over the circular cylinder is

$$
v_{\theta} = -\frac{\partial \psi}{\partial r} = -U_{\infty} \left(1 + \frac{R^2}{r^2} \right) \sin \theta
$$

On the surface of the cylinder $r=R$, we get the following expression for the tangential and radial components of velocity:

$$
v_{\theta} = -2U_{\infty} \sin \theta
$$

$$
v_r = 0
$$

The pressure is obtained from Bernoulli's equation:

$$
\frac{p}{\rho} + \frac{1}{2} (v_r^2 + v_\theta^2) = \frac{p_\infty}{\rho} + \frac{1}{2} U_\infty^2
$$

After some rearrangement we get the following nondimensional form:

$$
C_p(r,\theta) = \frac{p - p_{\infty}}{\frac{1}{2}\rho U_{\infty}^2} = 1 - \frac{v_r^2 + v_{\theta}^2}{U_{\infty}^2}
$$

At the surface, the only velocity component that is non-zero is the tangential component of velocity. Using $v_{\theta} = -2U_{\infty} \sin \theta$, we get at the cylinder surface the following expression for the pressure coefficient:

$$
C_p = 1 - 4\sin^2\theta
$$

Figure 10.23 Pressure distributions around a cylinder for subcritical, supercritical, and inviscid flows.

Fig. E4.7

From the pressure coefficient we can calculate the fluid force on the cylinder:

$$
\underline{F} = -\int_{A} (p - p_{\infty}) \underline{n} dA = -\frac{1}{2} \rho U_{\infty}^{2} \int_{A} C_{p}(R, \theta) \underline{n} dA
$$

$$
dA = (R d\theta) b \quad \text{b=span length}
$$

$$
\underline{F} = -\frac{1}{2} \rho U_{\infty}^{2} b R \int_{0}^{2\pi} (1 - 4 \sin^{2} \theta) (\cos \theta \hat{i} + \sin \theta \hat{j}) d\theta
$$

$$
C_{L} = \frac{\text{Lift}}{\frac{1}{2} \rho U_{\infty}^{2} b R} = \frac{F \cdot \hat{j}}{\frac{1}{2} \rho U_{\infty}^{2} b R} = -\int_{0}^{2\pi} (1 - 4 \sin^{2} \theta) \sin \theta d\theta = 0
$$

Due to symmetry of flow about x axis

$$
C_D = \frac{Drag}{\frac{1}{2}\rho U_{\infty}^2 bR} = \frac{F \cdot \hat{\iota}}{\frac{1}{2}\rho U_{\infty}^2 bR} = -\int_0^{2\pi} (1 - 4\sin^2\theta) \cos\theta \, d\theta = 0
$$

dÁlembert paradox: symmetry of flow about y axis

Circular cylinder with circulation

The stream function associated with the flow over a circular cylinder, with a point vortex of strength Γ placed at the cylinder center is:

$$
\psi = U_{\infty} r \sin \theta - \frac{\lambda \sin \theta}{r} - \frac{\Gamma}{2\pi} \ln r
$$

Recall the vortex strength K is related to the circulation, i.e., $K = \frac{\Gamma}{25}$ 2π

From <u>V</u>·<u>n</u>=0 at r=R: $\lambda = U_{\infty}R^2$

Therefore,
$$
\psi = U_{\infty} r \sin \theta - \frac{U_{\infty} R^2 \sin \theta}{r} - \frac{\Gamma}{2\pi} \ln r
$$

The radial and tangential velocity is given by:

$$
v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = U_{\infty} \left(1 - \frac{R^2}{r^2} \right) \cos \theta
$$

$$
v_{\theta} = -\frac{\partial \psi}{\partial r} = -U_{\infty} \left(1 + \frac{R^2}{r^2} \right) \sin \theta + \frac{\Gamma}{2\pi r}
$$

On the surface of the cylinder $(r=R)$:

$$
v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = U_{\infty} \left(1 - \frac{R^2}{R^2} \right) \cos \theta = 0
$$

$$
v_{\theta} = -\frac{\partial \psi}{\partial r} = -2U_{\infty} \sin \theta + \frac{\Gamma}{2\pi R}
$$

Consider the flow pattern as a function of Γ. The stagnation points on the cylinder are given by:

$$
v_{\theta} = -2U_{\infty} \sin \theta + \frac{\Gamma}{2\pi R} = 0
$$

$$
\sin \theta = \frac{\Gamma}{4\pi U_{\infty} R} = \frac{K}{2U_{\infty} R} = \frac{\beta}{2}
$$

The location of stagnation point is function of Γ :

For flow patterns like above (except a), we should expect to have lift force in –y direction.

Summary of stream and potential function for elementary 2-D flows

In Cartesian coordinates:

$$
u = \psi_y = \varphi_x
$$

$$
v = -\psi_x = \varphi_y
$$

In polar coordinates:

$$
v_r = \frac{\partial \varphi}{\partial r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta}
$$

$$
v_{\theta} = \frac{1}{r} \frac{\partial \varphi}{\partial \theta} = -\frac{\partial \psi}{\partial r}
$$

These elementary solutions can be combined in such a way that the resulting solution can be interpreted to have physical significance; that is, represent the potential flow solution for various geometries. Also, methods for arbitrary geometries combine uniform stream with distribution of the elementary solution on the body surface.

Some combination of elementary solutions to produce body geometries of practical importance

Keep in mind that this is the potential flow solution and may not well represent the real flow especially in region of adverse px.

Lift and Drag for Rotating Cylinder:

 $L/b = \rho U_{\infty} \Gamma$ (clockwise rotation); therefore,

$$
C_L = \frac{L}{\frac{1}{2}\rho U_{\infty}^2(2Rb)} = \frac{\Gamma}{U_{\infty}R}
$$

Note: $\Gamma = 2\pi K$ and $v_{\theta_s} = \frac{K}{R}$ \overline{R}

$$
\Rightarrow C_L = \frac{2\pi}{U_{\infty}} v_{\theta_S}
$$

Fig. 8.15 Drag and lift of a rotating cylinder of large aspect ratio at $Re_D = 3800$, after Tokumaru and Dimotakis [19] and Sengupta et al. [26].

Theoretical and experimental lift and drag of a rotating cylinder

Experiments have been performed that simulate the previous flow by rotating a circular cylinder in a uniform stream. In this case $v_{\theta} = R\omega$ which is due to no slip boundary condition.

- Lift is quite high but not as large as theory (due to viscous effect i.e. flow separation)
- Much larger typical airfoil same length; thus, have practical application
- Note drag force is also fairy high

Flettner (1924) used rotating cylinder to produce forward motion.

ふ…27 Spindle Rotors Take the Place of Wings

by LAWRENCE E. ANDREWS

Using spindle shaped slotted rotors, the inventor expects to eliminate many of the difficulties formerly experienced with cylindrical rotors

R OTATING conical spindles in-
stead of wings will provide the
lifting surface for a new flight machine to be launched at Roosevelt
Field this spring. While it is not the Field this spring, while it is not the first machine projected with lifting
rotors, it is the first using slotted,
conical surfaces.

It is the invention of John G. Guest, while actual construction is being carried out by L. C. Popper, construction and designing engineer of New York city. A rotor-wing airplane was made
a few years ago and was tried out on Long Island but its cylindrical type of rotor set up such an air disturbance
that its control was seriously hampered

This new ship makes use of the same general principle, but its mechanical execution is decidedly different. Laboratory tests have shown that it has a lifting power of 900 per cent greater than an equally surfaced conventional plane. In addition, it has the ability to land or take-off in very short distances

iand or take-off in very short distances
 $-\text{grast}$ present in the Autogrobic

There are four spindles, two on each

in place of wings. The lift is

led by the rotation of the spindles
 $\frac{1}{2}$ is the slip stream of the
 warms, some monowed out in the spindles which offer no resistance to the wind as they turn under. The slots serve to reduce the drag which disrupted to reduce the drag which disrupted

There are three motors in the machine. One, a 90 horse power Cirrus engine provides power to the tractor propeller. Two others, with two cylinders each, provide power to the spin-
dies. A universal throttle connects
anywane carrier.

Recently the navy has placed land-
ing-lights around the edges of the decks to facilitate night flying. Ability to fly at night is now a requirement, and much time is spent to keep the flyers in practice.

plane about to land on the deck of the
sarrier.

view of the curious rotors showing their shape and the slots cut into their surfaces.
Note that the forward rotors are larger than those in the rear.

I view of one of the small 2-cylinder
mployed for driving the forward
together with the main bearings
tearing. End of spindle at right. engines engines
spindles,
and g

licenses

10,780 airplanes were registered, including 3,227 unlicensed, having identification numbers only.

The licensed pilots included 532 women of which 433 were private and 42 were transport licenses.

New York has the greatest number of aircraft of all kinds, 1,227, with
California second. On the other hand, California has the greatest number of licensed pilots leading with 3,327, and New York second.

Gliders were also listed. There were 270 gliders of which 89 were licensed. Licensed glider pilots numbered 267.

The report is interesting in that there is a decided increase in every
item over those released for July of 1931.

with the pilot's seat. By speeding up
or slowing down the rotor motors, lateral control is accomplished. Elevator and rudder controls govern longitudinal direction in the usual manner.

utunal uncertainty of pilot and fuel,
the machine weight of pilot and fuel,
the emachine weight 3,734 pounds. The
cruising range is about 340 miles. It
measures 23½ feet from tip to tip
of spindles and is 18 feet long. The size compares favorably with that of the small training ship.
The spindles and their assembly

weight more than the wings in the
ordinary airplane, but the gross weight
is well under the figures set for light airplanes powered with the 90 horsepower Cirrus motors.

A New York manufacturing concern is financing the arrangements for the
research and development work on the
plane. They plan to manufacture the odd looking craft after the preliminary field and flight tests are made.

This machine is an excellent example of many similar attempts now being made toward producing a direct
lift wingless ship. There is undoubtedly a great field for wingless ships of this same general type and inventors will make no mistake in experimenting along these lines.

From experiments made to date, it is evident that the weight of a machine
can be supported with a smaller expenditure of power than where wings parameter of power many were winder
the power is
taken by the rotors, and this fact alone
justifies the additional complication.

Whether it will pay to employ auxiliary wings for safety in case of en-
gine failure, it is difficult to say, but in such a case the use of a parachute is an alternative.

 $\sigma_{\rm{H}}/2$

One very important improvement on
wing construction, and one that has proved very practicable in service, is proved very practication in service, is
the "slotted wing" invented by Hand-
ley-Page. This device very materially
increases the speed range of a ship by
varying the lift, and by allowing higher angles of attack than possible with a plain wing.

Essentially, this invention consists of a metal guide placed along the entering edge of the wing. This so controls the flow of air over the top surface of the wing that the air does not break away from the wing or "burble" until very high angles of attack are
attained. The slots are controlled automatically or manually, depending upon conditions.

However, it has been discovered that the wing "slots" are much more effec-
tive if an aileron is installed along the whole length of the trailing edge. At high angles, this hinged rear flap is depressed, and by this means even a greater lift is obtained at low speeds than with the slots alone. The writer has witnessed a ship of this type taking off and landing easily inside of a 100 foot circle. In a 15 m.p.h. breeze it hovered directly over one spot.

Handley-Page also instituted another innovation in wing construction which
departs entirely from the standard
wing. Essentially, it consists of a series of short streamline blades built into a unit, much after the manner of a Venetian blind or lattice. Each of these streamline blades is placed progressively at a flatter angle as we approach the trailing edge of the structure, and in this way, the whole area
of the wing is utilized effectively.

Next, in the development of wingless wings, is the cellule construction
of the "Vacuplane," described in the November issue of POPULAR AVIATION. This, it will be remembered, consisted of a short stubby cell carried over the fuselage, the upper surface of the cell
consisting of rods or slats. It is claimed that this arrangement so greatly decreases the pressure on the top of the cell that a very much greater speed range is obtained.

Helicopters, of some sort or other, have always been with us. Few of them have shown much indication of success until the coming of the Autogiro, which in general, belongs to the helicopter family. Helicopters, or ma-

The Stauffer "Gyroplane," showing the single blade rotor which turns only on landing o

chines equipped with lifting propellers, look nice on paper but they have more inherent defects than wings. True, they have the advantage of landing and taking off at near zero speed, but they are mechanically complicated.

We only look at their one advantage, that is of slow landing, but fail to see at the same time that their top speed
is limited. When we simmer the whole thing down into a nutshell, the speed range is not much greater, and usually less than an airplane.

In the point of low landing speed, a helicopter or lifting screw type has little advantage over an equally stand-
ard loaded wing, and still less advantage over a slotted wing type. The Autogiro, for example, has a top speed of about 100 m.p.h. but with the same top speed and loading, an airplane can land nearly as slowly.

Now, a helicopter type known as the Gyroplane, has recently been developed.
It is apparently based upon a more le is apparently based upon a more logical principle than those that have of an airplane and helicopter, with the
rotor used as an auxiliary to the wing.

When taking off, flying at slow horizonal speed, or in landing, the lifting
propeller revolves and assists the wings. However, when the plane is to fly at high speed, the lifting propeller or rotor is stopped so that flight is
now maintained by the wings alone.

Thus, if the wings are of the high speed type, this gives a tremendous speed range. It has a good gliding angle with a dead engine. This ship will probably range from a low speed of 15 m.p.h. to a high speed of about 145 m.p.h.

And now we get down to the so-
called "rotor" or cylinder type of lift, which as you probably know, consists of a large diameter rotating cylinder
projecting out on both sides of the
fuselage. When the rotors are not turning, the air-stream splits equally. around the cylinders and there is no lifting force exerted.

However, when the cylinders revolve the air-stream is twisted about in such a way that the pressure is higher on or way that the pressure is ingler on
one side of the cylinder than on the
other, thus producing the lift. Very little power is required to produce the rotation, and the cylinders can either be driven directly by the engine or else
through the action of the wind-stream. A small amount of cylinder surface produces a remarkable amount of lift.

Now, this plain rotor is entirely ineffective when the engine stops, hence the machine will drop suddenly as soon as the engine cuts out. To avoid this difficulty, it is safest to combine the rotor with a wing in such a way that the wing will always be available alone for dead engine landings or high speed operation.

One experimenter, Mr. Ray Thompson, who has recently come into our notice, has designed a new application of the rotor and wing. He has done quite a bit of experimenting with large models and has obtained quite remarkable results. This general class of lifting device, in my opinion, is the first step in the complete elimination of wings-far more practical than any possible helicopter arrangement. We hereby quote from a letter by Mr. Thompson on the subject:

"The rotor wing model had a span of 38 inches and a length of 42 inches, with a wing area of 360 square inches. With the rotors turning, it carried a
load of 9.5 pounds to a height of 18 feet, the rotor being driven by an electrio motor. This model had no propeller for pulling it forward, but was

(Continued on page 58)

