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Chapter 8.2 Elemental Plane Flow Solutions

Recall that for 2D we can define a stream function
such that:

u=1,
V==,
0 0 5
Wz = Vy —Uy = a(_lpx) —@(1/)3/) =—=Vy =0
i.e., V2 = 0. Also recall that ¢ and i are orthogonal:
uzlpy:(px and U=—¢x=§0y

dep = @dx + @,dy = udx + vdy
dy = Y dx + P, dy = —vdx + udy

. d u —
ie. ﬁ B :
@=constant dx W=constant
L \
i aem\ % / / / / (g \
Fxm; Wk = T
- ﬁ""""""‘"ﬁ A i

B

L 1f the slopes of the tangents to two curves are related by m;m, = -1, then
the two curves are perpendicular.
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Uniform stream
u=Uw=¢y=§0x ‘ﬁ‘ ‘i’f‘

v:O:—lpx:(py '-——-L—-n_v C AT

Where U,, = constant - TN
N SR
l.e.: Q= Uoox k : -
= |
Y =U,y | X
CARS Wt

Note: V2@ = V2 = 0 is satisfied.
V=Vp=U,.0

Say a uniform stream is at an angle « to the x-axis:

_ _oY _0¢

u=U,cosa = 3y — ox
. 0y 09

v=U,sina = — =
dx Jdy

After integration, we obtain the following expressions
for the stream function and velocity potential:

Y =U,(ycosa —xsina)

¢ =Uy(xcosa+ysina)



058:0160 Chapter 8.2
Professor Fred Stern  Fall 2024 3

2D Source or Sink

/

r

b = & X
$ o

| Source

x=rcosf y=rsinf

Imagine that fluid comes out radially at the origin with
uniform rate in all directions. (singularity at origin
where velocity is infinite).

Consider a circle of radius r enclosing this source. Let
V: be the radial component of velocity associated with
this source (or sink). Then, from conservation of mass,
for a cylinder of radius r, and width b perpendicular to
the paper,

Q = [,V - dA = constant
Where V =v,é, n=¢é, dA=ndA dA=rdbb
Q = (2nr)(b)
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Ur =
21br
m 0
=2V, =— Vg =
r
Q

Where m = po— is the source strength with units m#/s

velocity x length (m>0 for source and m<0 for sink).
Note that IV is singular at (0,0) since v, — oo.

In a polar coordinate:

0 10
L PO LT

S0, 10
a0
And:

V.-V=20

16

e —(rv,) +—

10 0
rae (VB) -

l.e.

6¢ 16¢
or raoe

10 0
vy = Tangential velocity = 299 _ ¢

rod  or

v, = Radial velocity =



058:0160
Professor Fred Stern  Fall 2024

Chapter 8.2

5

Such that V -V = 0 by definition.

Therefore,

_m_0p 10y

v"_r_ar_rae
10 d

0199 _ %

o= T80 T T or

@ and 1 are obtained by integration:

@ =minr =mlin./x?+ y?

FIGURE 7.5 The flow field of an ideal source located at the origin of coordinates in two dimensions. The

streamlines are radials and the potential lines are circles.

a2
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Doublets

/
Source Y

The doublet is derived from a source and sink equally
spaced apart about the origin along the x axis:

2tV

m
lIJ=__(01_ 02 >_)81_02=—_
sf;:k soiﬁ*ce m

tan 8, — tan 0,

2TV
tan (——) = tan(6, — 6,) =

m 1+ tan 6, tan 6,
Lm0 rsin@ Lm0 rsin@
an 6, = an @, =

L rcos9 —a 2 rcosO +a

2T 2ar sin 6
an (- 222) -

m r2 — q?
Therefore
w— mt 4 <2arsin9)
- 2; an r2 — q?
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For small distance

m 2ar sin 6 mar sin 6

2 r2—a2 n(r?-—a?)

The doublet is formed by letting a — 0 while
Increasing the strength m (m — oo) so that doublet

strength K = % remains constant. The flow direction
Is from the sink towards the source.

_ Ksin®
B r
Corresponding potential
_ Kcos6
B r
By rearranging
w K rsinf Ky 2+( +K)2
= —_—— = - . S
12 x? + y? * YT o

2

() -
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Plots of lines constant W reveal that streamlines for the
doublet are circles through the origin tangent to the x
axis as shown in Figure below (equation circle radius
R center (h,k) is (x-h)*+(y-k)>=R?). Circles show
various ¥ = constant above/below x axis

y FIGURE 7.6 The flow field of an ideal two-
dimensional doublet that points along the nega-
tive x-axis. The net source strength is zero so all
streamlines begin and end at the origin. In this
flow, the streamlines are circles tangent to the x-
axis at the origin.

—- el
axis of doublet *

Axis of the dipole is from the sink to the source, I.e.,
the flow is into the sink and out of the source.
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2D vortex

y = constant

¢ = constant

Suppose that value of the y» and ¢ for the source are
reversed.

v, =0
_16¢_ 61/)_1(
UH_TOH_ or r

Purely circulatory flow with vy — 0 like 1/r and
Infinity as r — 0.

Integration results in:
¢ = K0
Y=—-Klinr K=constant

2D vortex is irrotational everywhere except at the
origin where VV and 7 X V are infinity.
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Circulation

o
/.

-
SO A
»
H/

7.\% N
Al

( A

I

-~
- P
-

Circulation is defined by:

r=¢v-ds
C

or by using Stokes theorem: (if no singularity of the
flow in A)

c

Therefore, for potential flow I' = 0 in general.

However, this is not true for the point vortex due to the
singular point at vortex origin where V.and V X V are
Infinity.
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i - - K
If singularity exists: Free vortex vg = —

2T

27TK
[ = Ugég 'Td@ég = f —(rd@)
—— | T
0 vV ds 0

I
= 2nK and K = —
2T

Note for point vortex, flow is still irrotational
everywhere except at origin itself where V. - .

For a path not including (0,0) T =0

B C
F=f/:}9fg/-vé;dr+f vgeg - rdleyg
A B
D A
+f/u@/efvé;dr +j Vgeég - rdOeg =
C D

ABK — AOK = 0 since vg = X

r

I Figure 6.21 Circulation around various paths in a free
vortex.
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Stokes theorem can be used to show the existence of ¢ either
using the fact that (1) ¢ V - dsor (2) [V X V - dA equal
zero for conservative V' or equivalently irrotational
flow.

(1) With assumption for closed contour:

| veas=o
ABCB'A

It follows that
ngcz “ads = fAB,CK "as

since V is a single value. Therefore, the integration is
independent of path; and in general, for irrotational motion,
a scalar function ¢ (s) at a point s can be defined as:

qb(s) = f -ds, so = areference point
d¢p = ds dcp =V -éds, (ds = é,ds)
Note that =V¢p-é,,dp = Vep-é.ds
(K Vg)-és=0
Since, é.is not zero:
V="V

I.e., velocity vector is gradient of a scalar function ¢ if the
($V-ds=0).
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2)

To prove that a vector field F is the gradient of a scalar function ¢, we need to show that F satisfi

the condition for being irrotational, i.e., its curl is zero:

F=V¢ = VXF=0.

Steps to Prove:

1. Definition of a Gradient Field: If FF = V¢, then

_ (d¢ 3¢ 0¢
o \dz’ Oy’ 9z )
2. Compute the Curl: The curl of F is given by
i j k
d a d
VXFE=53 7 |
F, F, F,
where F,, —3¢ B, = y nsz:%.

Expanding the determinant,
8F, OF,\ .[(dF, dF, 8F, F,
VXF_I(&y Bz)—‘l(&c 8z)+k(8m ay)'

3. Symmetry of Mixed Partial Derivatives: If ¢ is a scalar field with continuous second-order

partial derivatives (smoothness), then the mixed partial derivatives commute;

2 2
¢ = Gl , and similarly for other pairs of variables.
daedy  Oydz

Substituting ¥, = 3¢' F, = B_§’ F, = aqﬁ into the curd formula;

9F. OF, &¢ ¢
dy Oz  OGydz 820y

and similarly for the other terms. Hence,

VxF=0.

Conclusion:

If the curl of a vector field F is zero (V % F = ), and the domain is simply connected (no holes),

then F is the gradient of some scalar function ¢.
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The point vortex singularity is Important in
aerodynamics, since distribution of sources and sinks
can be used to represent airfoils and wings as we shall
discuss shortly. To see this, consider as an example an
Infinite row of vortices:

Y = —KZ Inr;
i=1
2Ty 2TTX

1 1
= —EKln [E(COShT_ COST)

Where 7; is radius from origin of i vortex.

Superposition infinite row equally spaced vortices of
equal strength
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For |y| = a the flow approaches uniform flow with

_oy _ K

u =
dy — a

+ below X axis
- above x axis

Note that this flow is just due to infinite row of vortices
and there isn’t any pure uniform flow

Vortex sheet

From afar (i.e. |y| = a) looks like a thin sheet with
velocity discontinuity.

.I‘"

u=—nkla

u=+nkKla

Define y = % =strength of vortex sheet

V - ds (around closed contour)

2K
dI' = updx —uy,dx = (u; —uy)dx = de

: _dr _ . : :
L.e., y = — = circulation per unit span
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Note that there is no flow normal to the sheet so that
vortex sheet can be used to simulate a body surface.
This is the basis of airfoil theory where we let y =
v (x) to represent body geometry.

Vortex theorems of Helmholtz: (important role in the
study of the flow about wings)

1) The circulation around a given vortex line is
constant along its length

2) A vortex line cannot end in the fluid. It must
form a closed path, end at a boundary or go to
Infinity.

3)No fluid particle can have rotation, if it did not
originally rotate



