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Chapter 8.2 Elemental Plane Flow Solutions 
 

Recall that for 2D we can define a stream function 

such that: 

𝑢 = 𝜓𝑦 
 

𝑣 = −𝜓𝑥 
 

𝜔𝑧 = 𝑣𝑥 − 𝑢𝑦 =
𝜕

𝜕𝑥
(−𝜓𝑥) −

𝜕

𝜕𝑦
(𝜓𝑦) = −𝛻

2𝜓 = 0 

 

i.e., 𝛻2𝜓 = 0.  Also recall that 𝜑 and 𝜓 are orthogonal: 
 

𝑢 = 𝜓𝑦 = 𝜑𝑥    and    𝑣 = −𝜓𝑥 = 𝜑𝑦 
 

𝑑𝜑 = 𝜑𝑥𝑑𝑥 + 𝜑𝑦𝑑𝑦 = 𝑢𝑑𝑥 + 𝑣𝑑𝑦 
 

𝑑𝜓 = 𝜓𝑥𝑑𝑥 + 𝜓𝑦𝑑𝑦 = −𝑣𝑑𝑥 + 𝑢𝑑𝑦 
 

i.e.:     
𝑑𝑦

𝑑𝑥
|
𝜑=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

= −
𝑢

𝑣
=

−1
𝑑𝑦

𝑑𝑥
|
𝜓=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

1 

 

 
 

1 If the slopes of the tangents to two curves are related by m1m2 = -1, then 

the two curves are perpendicular. 
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Uniform stream 
 

𝑢 = 𝑈∞ = 𝜓𝑦 = 𝜑𝑥 
 

𝑣 = 0 = −𝜓𝑥 = 𝜑𝑦 
 

Where 𝑈∞ = constant 
 

i.e.:        𝜑 = 𝑈∞𝑥 
 

 𝜓 = 𝑈∞𝑦 
 

 

 

Note: 𝛻2𝜑 = 𝛻2𝜓 = 0 is satisfied. 
 

𝑉 = 𝛻𝜙 = 𝑈∞𝑖̂ 
 

Say a uniform stream is at an angle 𝛼 to the x-axis: 
 

𝑢 = 𝑈∞ 𝑐𝑜𝑠 𝛼 =
𝜕𝜓

𝜕𝑦
=
𝜕𝜙

𝜕𝑥
  

 

𝑣 = 𝑈∞ 𝑠𝑖𝑛 𝛼 = −
𝜕𝜓

𝜕𝑥
=
𝜕𝜙

𝜕𝑦
 

 

After integration, we obtain the following expressions 

for the stream function and velocity potential: 
 

               𝜓 = 𝑈∞(𝑦 𝑐𝑜𝑠 𝛼 − 𝑥 𝑠𝑖𝑛 𝛼) 
 

  𝜙 = 𝑈∞(𝑥 𝑐𝑜𝑠 𝛼 + 𝑦 𝑠𝑖𝑛 𝛼) 
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2D Source or Sink 

 

 
 

𝑥 = 𝑟 cos 𝜃     𝑦 = 𝑟 sin 𝜃 

 

Imagine that fluid comes out radially at the origin with 

uniform rate in all directions. (singularity at origin 

where velocity is infinite).   

 

Consider a circle of radius r enclosing this source. Let 

vr be the radial component of velocity associated with 

this source (or sink). Then, from conservation of mass, 

for a cylinder of radius r, and width b perpendicular to 

the paper, 
 

𝑄 = ∫ 𝑉 ⋅ 𝑑𝐴
𝐴

 = constant  

 

Where  𝑉 = 𝑣𝑟𝑒�̂�    𝑛 = 𝑒�̂�    𝑑𝐴 = 𝑛dA    𝑑𝐴 = 𝑟𝑑𝜃𝑏    

 

𝑄 = (2𝜋𝑟)(𝑏) 
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𝑣𝑟 =
𝑄

2𝜋𝑏𝑟
 

 

⇒ 𝑣𝑟 =
𝑚

𝑟
    𝑣𝜃 = 0 

 

Where 𝑚 =
𝑄

2𝜋𝑏
 is the source strength with units m2/s 

velocity × length (m>0 for source and m<0 for sink).  
 

Note that 𝑉 is singular at (0,0) since 𝑣𝑟 → ∞. 
 

In a polar coordinate: 
 

𝑉 = 𝛻𝜙 =
𝜕𝜙

𝜕𝑟
𝑒�̂� +

1

𝑟

𝜕𝜙

𝜕𝜃
𝑒�̂�   

 

𝛻 =
𝜕

𝜕𝑟
𝑒�̂� +

1

𝑟

𝜕

𝜕𝜃
𝑒�̂� 

And: 

𝛻 ⋅ 𝑉 = 0 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝑣𝜃) = 0 

i.e. 

𝑣𝑟 = Radial velocity =
𝜕𝜑

𝜕𝑟
=
1

𝑟

𝜕𝜓

𝜕𝜃
 

 

𝑣𝜃 = Tangential velocity =
1

𝑟

𝜕𝜑

𝜕𝜃
= −

𝜕𝜓

𝜕𝑟
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Such that  𝛻 ⋅ 𝑉 = 0 by definition. 
 

Therefore, 
 

 𝑣𝑟 =
𝑚

𝑟
=
𝜕𝜑

𝜕𝑟
=
1

𝑟

𝜕𝜓

𝜕𝜃
 

 

𝑣𝜃 = 0 =
1

𝑟

𝜕𝜑

𝜕𝜃
= −

𝜕𝜓

𝜕𝑟
 

  

𝜑 and 𝜓 are obtained by integration: 

 

𝜑 = 𝑚 𝑙𝑛 𝑟 = 𝑚 𝑙𝑛√𝑥2 + 𝑦2 
 

𝜓 = 𝑚𝜃 = 𝑚 𝑡𝑎𝑛−1
𝑦

𝑥
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Doublets 

 
 

The doublet is derived from a source and sink equally 

spaced apart about the origin along the x axis: 

 

𝛹 = −
𝑚

2𝜋
 ( 𝜃1⏟
𝑠𝑖𝑛𝑘

− 𝜃2⏟
𝑠𝑜𝑢𝑟𝑐𝑒

) → 𝜃1 − 𝜃2 = −
2𝜋𝛹

𝑚
 

 

𝑡𝑎𝑛 (−
2𝜋𝛹

𝑚
) = 𝑡𝑎𝑛(𝜃1 − 𝜃2) =

𝑡𝑎𝑛 𝜃1 − 𝑡𝑎𝑛 𝜃2
1 + 𝑡𝑎𝑛 𝜃1 𝑡𝑎𝑛 𝜃2

 

 

𝑡𝑎𝑛 𝜃1 =
𝑟 𝑠𝑖𝑛 𝜃

𝑟 𝑐𝑜𝑠 𝜃 − 𝑎
    𝑡𝑎𝑛 𝜃2 =

𝑟 𝑠𝑖𝑛 𝜃

𝑟 𝑐𝑜𝑠 𝜃 + 𝑎
 

 

𝑡𝑎𝑛 (−
2𝜋𝛹

𝑚
) =

2𝑎𝑟 sin 𝜃

𝑟2 − 𝑎2
 

 

Therefore 

Ψ = −
𝑚

2𝜋
tan−1 (

2𝑎𝑟 sin 𝜃

𝑟2 − 𝑎2
) 
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For small distance 

 

Ψ = −
𝑚

2𝜋

2𝑎𝑟 sin 𝜃

𝑟2 − 𝑎2
= −

𝑚𝑎𝑟 sin 𝜃

𝜋(𝑟2 − 𝑎2)
 

 

The doublet is formed by letting 𝑎 → 0 while 

increasing the strength m (𝑚 →  ∞) so that doublet 

strength 𝐾 =
𝑚𝑎

𝜋
 remains constant.  The flow direction 

is from the sink towards the source. 

 

Ψ = −
𝐾 sin 𝜃

𝑟
 

 

Corresponding potential 

 

𝜙 =
𝐾 cos𝜃

𝑟
 

 

By rearranging 

 

Ψ = −
𝐾 rsin 𝜃

𝑟2
= −

𝐾𝑦

𝑥2 + 𝑦2
→ 𝑥2 + (𝑦 +

𝐾

2Ψ
)
2

= (
𝐾

2Ψ
)
2

= 𝑅2 
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Plots of lines constant Ψ reveal that streamlines for the 

doublet are circles through the origin tangent to the x 

axis as shown in Figure below (equation circle radius 

R center (h,k) is (x-h)2+(y-k)2=R2).  Circles show 

various Ψ = constant above/below x axis 

 

 

 

 

Axis of the dipole is from the sink to the source, i.e., 

the flow is into the sink and out of the source. 
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2D vortex 

 
 

Suppose that value of the 𝜓 and 𝜑 for the source are 

reversed. 
 

𝑣𝑟 = 0 
 

𝑣𝜃 =
1

𝑟

𝜕𝜙

𝜕𝜃
= −

𝜕𝜓

𝜕𝑟
=
𝐾

𝑟
 

 

Purely circulatory flow with  𝑣𝜃 → 0 like 1/r and 

infinity as 𝑟 → 0. 
 

Integration results in: 

 

𝜙 = 𝐾𝜃 

 
𝜓 = −𝐾 𝑙𝑛 𝑟        K=constant 

 

2D vortex is irrotational everywhere except at the 

origin where 𝑉 and 𝛻 × 𝑉 are infinity. 

 

A B 

C 
D 
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Circulation 

 

 

 

 

 

 

 

 

 

Circulation is defined by: 

 

𝛤 = ∮𝑉 ⋅  𝑑𝑠
𝑐

 

 

or by using Stokes theorem: (if no singularity of the 

flow in A) 

 

𝛤 = ∮𝑉 ⋅ 𝑑𝑠
𝑐

= ∫𝛻 × 𝑉 ⋅ 𝑑𝐴 = ∫𝜔 ⋅ 𝑛𝑑𝐴  = 0 

 

Therefore, for potential flow 𝛤 = 0 in general.  

 

However, this is not true for the point vortex due to the 

singular point at vortex origin where V and 𝛻 × 𝑉 are 

infinity. 
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If singularity exists: Free vortex 𝜐𝜃 =
𝐾

𝑟
 

 

Γ = ∫ 𝑣𝜃�̂�𝜃⏟
𝑉

⋅
2𝜋

0

𝑟𝑑𝜃�̂�𝜃⏟  
𝑑𝑠

= ∫
𝐾

𝑟

2𝜋

0

(𝑟𝑑𝜃)  

=  2𝜋𝐾  and  𝐾 =
Γ

2𝜋
   

 

Note for point vortex, flow is still irrotational 

everywhere except at origin itself where V → . 
 

For a path not including (0,0)  Γ = 0 
 

Γ = ∫ 𝑣𝜃𝑒�̂� ⋅ 𝑒�̂�𝑑𝑟
𝐵

𝐴

+∫ 𝑣𝜃𝑒�̂�  ⋅ 𝑟𝑑𝜃𝑒�̂�

𝐶

𝐵

 

+∫ 𝑣𝜃𝑒�̂� ⋅ 𝑒�̂�𝑑𝑟 
𝐷

𝐶

+∫ 𝑣𝜃𝑒�̂� ⋅ 𝑟𝑑𝜃𝑒�̂� 
𝐴

𝐷

= 

Δ𝜃𝐾 − Δ𝜃𝐾 = 0 since 𝑣𝜃 =
𝐾

𝑟
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Stokes theorem can be used to show the existence of 𝜑 either 

using the fact that (1)  ∮ 𝑉 ⋅ 𝑑𝑠
𝑐

 or (2) ∫𝛻 × 𝑉 ⋅ 𝑑𝐴 equal 

zero for conservative 𝑉 or equivalently irrotational 

flow.   
 

(1) With assumption for closed contour: 
 

∫ 𝑉 ⋅ 𝑑𝑠
𝐴𝐵𝐶𝐵′𝐴

= 0 

 

It follows that  
 

∫ 𝑉 ⋅ 𝑑𝑠
𝐴𝐵𝐶

= ∫ 𝑉 ⋅ 𝑑𝑠 
𝐴𝐵′𝐶

  

 

since 𝑉 is a single value. Therefore, the integration is 

independent of path; and in general, for irrotational motion, 

a scalar function 𝜙(𝑠) at a point 𝑠 can be defined as: 
 

𝜙(𝑠) = ∫ 𝑉 ⋅ 𝑑𝑠
𝑠

𝑠0
 ,  𝑠0 = a reference point 

𝑑𝜙 = 𝑉 ⋅ 𝑑𝑠,    𝑑𝜙 = 𝑉 ⋅ �̂�𝑠𝑑𝑠,  (𝑑𝑠 = �̂�𝑠𝑑𝑠)  

Note that  
𝑑𝜙

𝑑𝑠
= 𝛻𝜙 ⋅ �̂�𝑠, 𝑑𝜙 =  𝛻𝜙 ∙ �̂�𝑠𝑑𝑠 

(𝑉 − 𝛻𝜙) ⋅ �̂�𝑠 = 0 
 

Since,  �̂�𝑠is not zero: 

𝑉 = 𝛻𝜙 

i.e., velocity vector is gradient of a scalar function 𝜑 if the 

(∮𝑉 ⋅ 𝑑𝑠 = 0). 
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(2)  
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The point vortex singularity is important in 

aerodynamics, since distribution of sources and sinks 

can be used to represent airfoils and wings as we shall 

discuss shortly. To see this, consider as an example an 

infinite row of vortices: 
 

𝜓 = −𝐾∑𝑙𝑛 𝑟𝑖

∞

𝑖=1

= −
1

2
𝐾 𝑙𝑛 [

1

2
(𝑐𝑜𝑠ℎ

2𝜋𝑦

𝑎
− 𝑐𝑜𝑠

2𝜋𝑥

𝑎
)] 

 

Where 𝑟𝑖 is radius from origin of ith vortex. 

 

 
Superposition infinite row equally spaced vortices of 

equal strength 
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For |𝑦| ≥ 𝑎 the flow approaches uniform flow with  
 

𝑢 =
𝜕𝜓

𝜕𝑦
= ±

𝜋𝐾

𝑎
  

 

+ below x axis 

- above x axis 
 

Note that this flow is just due to infinite row of vortices 

and there isn’t any pure uniform flow   
 

Vortex sheet 
 

From afar (i.e. |𝑦| ≥ 𝑎) looks like a thin sheet with 

velocity discontinuity. 

 

Define 𝛾 =
2𝜋𝐾

𝑎
=strength of vortex sheet 

 

𝑉 ⋅ 𝑑𝑠 (around closed contour) 
 

𝑑𝛤 = 𝑢𝑙𝑑𝑥 − 𝑢𝑢𝑑𝑥 = (𝑢𝑙 − 𝑢𝑢)𝑑𝑥 =
2𝜋𝐾

𝑎
𝑑𝑥 

 

i.e.,  𝛾 =
𝑑𝛤

𝑑𝑥
 = circulation per unit span 
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Note that there is no flow normal to the sheet so that 

vortex sheet can be used to simulate a body surface. 

This is the basis of airfoil theory where we let 𝛾 =
𝛾(𝑥) to represent body geometry. 

 

Vortex theorems of Helmholtz: (important role in the 

study of the flow about wings) 

 

1) The circulation around a given vortex line is 

constant along its length 

 

2) A vortex line cannot end in the fluid. It must 

form a closed path, end at a boundary or go to 

infinity. 

 

3) No fluid particle can have rotation, if it did not 

originally rotate 


