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Chapter 8.1: Introduction, Theory, and Solution 

Techniques 
 

Introduction 
 

 
 

For high Re external flow about streamlined bodies 

viscous effects are confined to the boundary layer and 

wake region. For regions where the BL is thin i.e. 

favorable or weak adverse pressure gradient regions, 

viscous/inviscid interaction is weak and traditional BL 

theory can be used. For regions where BL is thick 

and/or the flow is separated i.e. strong adverse 

pressure gradient regions traditional more advanced 

boundary layer theory must be used including 

viscous/inviscid interactions, whereas the current 

data-of-the-art is, of course, CFD methods. 
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For internal flows at high Re viscous effects are 

always important except near the entrance. Recall that 

vorticity is generated in regions with large shear. 

Therefore, outside the BL and wake and if there is no 

upstream vorticity, as per Kelvins Circulation 

Theorem, then ω = 0 is a good approximation. 

 

Note that for compressible flow this is not the case in 

regions of large entropy gradients.  Also, we are 

neglecting non-inertial effects and other mechanisms 

of vorticity generation. 

 
Navier-Stokes equations for constant property flow ( and 

 constant: 

 

𝜌𝑎 = −𝛻(𝑝) − 𝜌𝑔�̂� + 𝜇𝛻2𝑉 = −𝛻(𝑝 + 𝛾𝑧) + 𝜇𝛻2𝑉 

 

𝜌 [
𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ 𝛻𝑉] 

 

= −𝛻(𝑝 + 𝛾𝑧) + 𝜇[𝛻(𝛻 ⋅ 𝑉) − 𝛻 × (𝛻 × 𝑉)] 

 

Viscous term=0 for =constant and =0, i.e., potential flow 

solutions are also solutions of the NS under such conditions.  

But cannot satisfy the no slip condition and suffers from 

D'Alembert's paradox that drag = 0. 
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In fluid dynamics, d'Alembert's paradox (or the 

hydrodynamic paradox) is a contradiction reached in 1752 

by French mathematician Jean le Rond d'Alembert. 

D'Alembert proved that – for incompressible and inviscid 

potential flow – the drag force is zero on a body moving with 

constant velocity relative to the fluid. Zero drag is in direct 

contradiction to the observation of substantial drag on bodies 

moving relative to fluids, such as air and water, especially at 

high velocities corresponding with high Reynolds numbers. 

It is a particular example of the reversibility paradox. 

 
A potential flow is constructed by adding simple 

elementary flows and observing the result. 

 
Streamlines for the incompressible potential flow 

around a circular cylinder in a uniform onflow. 

https://en.wikipedia.org/wiki/Elementary_flow
https://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
https://en.wikipedia.org/wiki/Potential_flow_around_a_circular_cylinder
https://en.wikipedia.org/wiki/Potential_flow_around_a_circular_cylinder
http://en.wikipedia.org/wiki/D'Alembert's_paradox
https://en.wikipedia.org/wiki/File:Construction_of_a_potential_flow.svg
https://en.wikipedia.org/wiki/File:Potential_cylinder.svg
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Potential Flow Theory 
 

Primarily for external flow applications we now 

consider inviscid (𝜇 = 0), incompressible  = 

constant, and irrotational flow =0, i.e., ideal flow 

theory. 
 

1) Determine 𝜑 from solution to Laplace equation 

(different from NS BVP, p not needed and 

determined post facto from Bernoulli equation) 
 

 
 

𝐷𝐹

𝐷𝑡
= 0 →

𝜕𝐹

𝜕𝑡
+ 𝑉. 𝛻𝐹 = 0 → 𝑉. 𝑛 = −

1

|𝛻𝐹|

𝜕𝐹

𝜕𝑡
   on SB 

 

F = surface function = z - SB 
 

for steady flow 𝑉. 𝑛 = 0    
 

2) Determine 𝑉 from 𝑉 = 𝛻𝜙 and p(x) from 

Bernoulli equation 

 



 058:0160  Chapter 8.1 

Professor Fred Stern     Fall 2024  5 

Euler equation for Incompressible Flow: 

 

𝛻 ⋅ 𝑉 = 0 

 

𝜌
𝐷𝑉

𝐷𝑡
= −𝛻𝑝 + 𝜌𝑔 

 

𝜌
𝜕𝑉

𝜕𝑡
+ 𝜌𝑉 ⋅ 𝛻𝑉 = −𝛻(𝑝 + 𝛾𝑧) 

 

𝑉 ⋅ 𝛻𝑉 = 𝛻
𝑉2

2
− 𝑉 × 𝜔 

 

Where 𝜔 = 𝛻 × 𝑉 = vorticity = 2 x fluid angular 

velocity 

 

⇒ 𝜌
𝜕𝑉

𝜕𝑡
+ 𝛻(𝑝 +

1

2
𝜌𝑉2 + 𝛾𝑧) = 𝜌𝑉 × 𝜔 

 

For 𝜔 = 0, i.e., 𝛻 × 𝑉 = 0, then 𝑉 = 𝛻𝜙 and the 

unsteady potential flow Bernoulli equation follows: 

 

𝜌
𝜕𝜙

𝜕𝑡
+ 𝑝 +

1

2
𝜌𝛻𝜙 ⋅ 𝛻𝜙 + 𝛾𝑧 = 𝐵(𝑡)  
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The continuity equation shows that the GDE for 𝜑 is 

the Laplace equation which is a 2nd order linear PDE 

i.e. superposition principle is valid. (Linear 

combination of solution is also a solution) 

 

𝛻 ⋅ 𝑉 = 𝛻 ⋅ 𝛻𝜙 = 𝛻2𝜙 = 0 

 
𝜙 = 𝜙1 + 𝜙2 

 
𝛻2𝜙 = 0 ⇒ 𝛻2(𝜙1 + 𝜙2) = 0 ⇒ 𝛻2𝜙1 + 𝛻2𝜙2 = 0 

 

⇒ {
𝛻2𝜙1 = 0

𝛻2𝜙2 = 0
 

 

Techniques for solving Laplace equation: 

 

1) Superposition of elementary solution (simple 

geometries) 

2) Surface singularity method (integral equation) 

3)  FD or FE 

4) Electrical or mechanical analogs  

5) Conformal mapping (for 2D flow) 

6) Analytical for simple geometries (separation of 

variable etc.) 


