ME:5160 Chapter 7.7
Professor Fred Stern  Fall 2024 1

Chapter 7.5 Turbulent Boundary Layer

Introduction: Transition to Turbulence

The transition process can be described as a succession of Tollmien-
Schlichting waves, development of A — structures (hairpin vortices),
vortex decay (viscous diffusion and dissipation) and formation of
turbulent spots as preliminary stages to fully turbulent boundary-layer
flow.

The phenomena observed during the transition process are similar for
the flat plate boundary layer and for the plane channel flow, as shown in
the following figure based on measurements by M. Nishioka et al.
(1975). Periodic initial perturbations were generated in the BL using an
oscillating cord.

For typical commercial surfaces transition occurs atRe,, ~5x10°.
However, one can delay the transition to Re,, ~3x10° with care in
polishing the wall.

Y .
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]-q Seioal >l 3-dimensional —>| |
Laminar |<—————Transiﬁon ; =J] Turbulent

Fig. 15.38. Signals found at different regions in the transition at a plate at zero
incidence, after M. Nishioka et al. (1975, 1990)
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Reynolds Average of 2D boundary layer equations

u=uo+u’; v=v+V; wW=W+W; p=p+p;

Substituting u, v and w into continuity equation and taking the time
average we obtain,

ou oV ow ou oV ow
+—t—= +—+ =0
ox oy o0z oXx oy 0z
Similarly, for the momentum equations and using continuity (neglecting
9,
DV
—=-Vp+V-r.
IO Dt p ij
Where:
— L] pUU
. aXJ 8Xi )
Laminar Turbulent
Assume
0 — o
S(X) << Xwhich means V <<, ox oy
0
mean flow structure is two-dimensional: " 07

Note the mean lateral turbulence is not zero, W'2 #0 , butits z
derivative is assumed to vanish.
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Then, we get the following BL equations for incompressible steady
flow:

oL v _,
&+5 - Continuity
U@U +\76U ~U dU, N 107
ox oy e dx o 0y X-momentum
op oV’
oy =P oy y-momentum

Where U is the free-stream velocity and

ou S
T=4——puVv

Note:

e The equations are solved for the time averages U and V

e The shear stress now consists of two parts: 1. first part is due to
the molecular exchange and is computed from the time-averaged
field as in the laminar case; 2. The second part appears
additionally and is due to turbulent motions.

e The additional term is a new unknown for which a relation with
the average velocity must be constructed via a turbulence model.

Integrate y- momentum equation across the boundary layer

a2

p ~ p,(x)— pv
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So, unlike laminar BL, there is a slight variation of pressure across the
turbulent BL due to velocity fluctuations normal to the wall, which is
often no more than 4% of the stream-wise velocity and thus can be
neglected.

The Bernoulli relation is assumed to hold in the inviscid free stream:

dp, / dx =~ —pU,dU, / dx

Assume the free stream conditions, Ue(x) IS known. The boundary
conditions are:

No slip: U(X,O) =
Free stream matching: U(X, o )

Flat plate boundary layer (zero pressure gradient)

Re; = 5x10°~ 3x10°for a flat plate boundary layer

Recrit ~ 100,000
c; do

2 dx

As was done for the approximate laminar flat plate boundary-
layer analysis, solve by expressing cf = ¢¢ (6) and 6 = 6(5) and
integrate, i.e., assume that the log-law valid across entire
turbulent boundary-layer

u 1. yu :
= —Zn y +B neglect laminar sub and

u K Vv buffer layer and velocity
defect regions
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aty=0,u=U
U 1, du
=~ =ZIn—+B
u K \Y%
\ C 1/2
Res| -
2

5 1/2 c 1/2
or (—j =2.44In Res(—fj +5
Cs 2

+SUNLY o33 Lov\ WOk

¢(8) = .02 Res™/® power-law fit

Next, evaluate

o
dx dxgU U

can use log-law or more simply a power law fit
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1/7
u — y Note: cannot be used to
U o obtain cf (8) since tw — ©
7
0=—6=0(0
7 (6)
v (U)Wt A
"7"\%,:‘1.:'%:; .(%‘/5\*!"5-\ = U k!ﬁ_\"(‘/“l\ p—
3 a =2
ve': L% \-%}A\k - ltkﬁgliﬁaé\ /"\-X 5“*\&. "\d"— %/S
Ay =Ay/§
w 5\‘/ & g 3
'S[ (& ) <:L\ <(ﬁ:—\ " &m‘) A ".-g{“ \
\\(\AQ\\L'-‘ \‘\N‘r\
S = ;Aﬁ_g Wi\

0.8 — Seventh
root profile,

Eq. (7.39)

0.6

Qs

04 Exact Blasius profile

for all laminar Re,
(Table 7.1)

Parabolic
approximation,
Eq. (7.6)
| | | |
0.2 0.4 0.6 0.8 1.0

Comparison of dimensionless laminar and turbulent flat-plate velocity

profiles
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These formulas are for a fully turbulent flow over a smooth flat
plate from the leading edge; in general, give better results for
sufficiently large Reynolds number Re. > 107,

Alternate forms by using the same velocity profile u/U = (y/5)Y’
assumption but using an experimentally determined shear stress
formula z = 0.0225pU?(1/US)Y* are:

) _0.058 0.072

_ ~1/5 _ 0072
~ = 0.37Re, O = pets L0 T T
0.029pU?
shear stress. t,, = —175
Re

X

These formulas are valid only in the range of the experimental
data, which covers Re. =5 x 10° ~ 107 for smooth flat plates.

Other empirical formulas are by using the logarithmic velocity-
profile instead of the 1/7-power law:

> = ¢;(0.98log Re, — 0.732)

¢s = (2logRe, — 0.65)7%3

. 0.455
" (logio Rep)?58

Cp

These formulas are also called as the Prandtl-Schlichting skin-
friction formula and valid in the whole range of Re. < 10°.
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For these experimental/empirical formulas, the boundary layer is
usually “tripped” by some roughness or leading-edge disturbance, to
make the boundary layer turbulent from the leading edge.

No definitive values for turbulent conditions since depend on
empirical data and turbulence modeling.

Finally, composite formulas that consider both the initial laminar
boundary layer and subsequent turbulent boundary layer, i.e., in the
transition region (5 x 10° < Re. < 8 x 107) where the laminar drag at
the leading edge is an appreciable fraction of the total drag:

0.031 1440
Cp = T~ e, (Rétrans = 5 X 105)
Re]
0.031 8700
Cp = T~ Re, (Retrans =3X 106)
Re]
0.074 1700
Cp = T~ Re, (Retrans =5X 105)
5
ReL
0.455 1700
CD - - (Retrans = 5 X 105)

"~ (logyoRer)%58  Rey
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0.008
0.006 - ¢; = (2log Re, — 0.65) %3
Turbulent smooth plate
S
(&)
0.058
0.004 ¢ =—7 (5%10° <Re, <107)
Laminar
0.002
10° 10° 10 10° 10°
Re,
0.008
¢ 0455
/ 7™ (logyo Re, 258
0.006 Turbulent smooth plate
— | ¢ = 0'014 (5% 10° < Re, < 107)
0.004
0.002 T~ llogoRe,)2%  Re,
- Laminar G = 0.074 17:)0 (5 x 10° < Re, < 107)
- - - R 5 L
szlzﬁ e L0031 1440
B VRer f =T T T Re
R | T T S L
o7 10° 10 10° 10°
Re,

Local friction coefficient ¢s (top) and friction drag coefficient €, =
Cr (bottom) for a flat plate parallel to the upstream flow. Lower
case for skin friction and upper case for drag coefficient.
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Fig. 7.6 Drag coefficient of laminar and turbulent boundary layers on
smooth and rough flat plates.
N

¢ = (2.87 + 1.58log =) ~%°
r= 99 s Fully rough flow

L
Cp = (1.89 + 1.62l0g ) 7>*

J
Again, shown on Fig. 7.6. along with transition region curves developed
by Schlichting which depend on Re; = { 5x105

3x10°
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Momentum Integral Equations valid for BL solutions

The momentum integral equation has the identical form as the laminar-
flow relation:

d—9—|—(2—|—H)9 dUe: T =
dx U, dx pU, 2

e

W f

For laminar flow:

(C¢,H,0) are correlated in terms of simple parameter PR

v dx

For Turbulent flow:

(C¢,H,0) cannot be correlated in terms of a single parameter.

Additional parameters and relationships are required that model the
influence of the turbulent fluctuations. There are many possibilities all of
which require a certain amount of empirical data. As an example, we

will review the n—f method.
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-3 Method

As mentioned earlier. the momentum mntegral equation for turbulent
flow has the identical form as the laminar-flow relation:
dg C g dU
B em P8
de 2 U, dx
With U(x) assumed known, there are three unknown (' f'H & for

turbulent flow. Thus, at least two additional relations are needed to find
unknowns. There are many possibilities for additional relations all of
which require a certain amount of empirical data. As an example we will
review the m—p method.

Cole’s law of the wake:

By addmng the wake to the log-law. the velocity profile for both overlap
and outer layers can be written as:

,,
u’ =lB]J*' +8 +£f{r,.1]
K '

where
n=y/d

. T 3
f(m)=sin’(>-m)=3n"—27
IM=xAd/2

The quantity IT 1s called Coles' wake parameter.

By integrating wall-wake law across the boundary layer:
H
A=a(ll)——
(IT) 71

2+3.179T1+1.5IT*
w(1+1I)
_Ue_1+1I

Re. = explicd — kB — 211
oo K

a(Tl) =
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If we eliminate ITbetween these formulas. we obtain a unique relation
among C,=2/4" Hand 6.

C,=2/4A"=2/[a(ll)—/T]
; (oD ——]
o 23T+ 1 STE
x(1+1I) (II)
Re, =20 -1 oot — xB—2m)
| ¥, e

Clauser's equilibrium parameter -

For outer layer,

- ap
U —-u=fir,.po.v.06,—

. fr,.p.. {ﬁ}
Usmg dimensional analysis:

T _}c‘i'ci"p

(T, [ o) r.'i'rdr

Clauser (1954) replaced & by displacement thickness 5™

U -u ¥
W=E{E”ﬂ}
_ddp_ g dU,
r, dx I, dx

B 15 called Clauser's equalibrum parameter.

Das (1987) showed that EFD data pomts fit into the following
polynomial correlation:
8 =—04+0.76IT+0.421T°

Therefore:

& au, 2
A'H 'L_f = —0.4+076I1+04201 (III)




ME:5160 Chapter 7.7
Professor Fred Stern  Fall 2024 16

If we eliminate TTusing that Re, _Ue_ %m(mﬂ. —xE-21IT). we obtamn
' L

another relation among €, =2/ A* Hand 8.

Equations (I). (II). and (III) can be solved simultaneously using say a
Runge-Kutta method to find C ¥ .H. B Equations are solved with matial

condition for 8(x;) and integrated to x=x;+Ax iteratively. Estimated 6
gives Reg and IT, B gives H. Lastly Cris evaluated using Rep and H.
Iterations required until all relations satisfied and then proceed to next
Ax



