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Chapter 7.5 Turbulent Boundary Layer 

 
Introduction: Transition to Turbulence   

 

The transition process can be described as a succession of Tollmien-

Schlichting waves, development of Λ – structures (hairpin vortices), 

vortex decay (viscous diffusion and dissipation) and formation of 

turbulent spots as preliminary stages to fully turbulent boundary-layer 

flow. 

 

The phenomena observed during the transition process are similar for 

the flat plate boundary layer and for the plane channel flow, as shown in 

the following figure based on measurements by M. Nishioka et al. 

(1975). Periodic initial perturbations were generated in the BL using an 

oscillating cord.  

 

For typical commercial surfaces transition occurs at 5

, 105Re trx . 

However, one can delay the transition to 6

, 103Re trx  with care in 

polishing the wall.  
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Reynolds Average of 2D boundary layer equations   
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Substituting u, v and w into continuity equation and taking the time 

average we obtain, 
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Similarly, for the momentum equations and using continuity (neglecting 

g), 
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Assume  

( ) xx  which means uv  ,    yx 








 

mean flow structure is two-dimensional: 0=w ,  
0=





z  

Note the mean lateral turbulence is not zero, 02' w  , but its z 

derivative is assumed to vanish. 

 

 

 

Laminar Turbulent 
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Then, we get the following BL equations for incompressible steady 

flow: 
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Where eU is the free-stream velocity and 
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Note:  

• The equations are solved for the time averages u and v  

• The shear stress now consists of two parts: 1. first part is due to 

the molecular exchange and is computed from the time-averaged 

field as in the laminar case; 2. The second part appears 

additionally and is due to turbulent motions.  

• The additional term is a new unknown for which a relation with 

the average velocity must be constructed via a turbulence model. 

 

Integrate y- momentum equation across the boundary layer 

 

( ) 2'vxpp e −  
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So, unlike laminar BL, there is a slight variation of pressure across the 

turbulent BL due to velocity fluctuations normal to the wall, which is 

often no more than 4% of the stream-wise velocity and thus can be 

neglected.  

 

The Bernoulli relation is assumed to hold in the inviscid free stream: 

 

/ /e e edp dx U dU dx −  

 

Assume the free stream conditions, ( )xUe  is known. The boundary 

conditions are: 

 

No slip:                           ( ) ( ) 00,0, == xvxu  

Free stream matching:    ( ) ( )xUxu e=,  

 

 

Flat plate boundary layer (zero pressure gradient)   

 
Ret = 5×105 3×106 for a flat plate boundary layer 

        Recrit  100,000 

  
dx

d

2

cf 
=      

 

As was done for the approximate laminar flat plate boundary-

layer analysis, solve by expressing cf = cf () and  = () and 

integrate, i.e., assume that the log-law valid across entire 

turbulent boundary-layer 
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buffer layer and velocity 

defect regions 
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at y = , u = U 
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 𝑐𝑓(𝛿) ≅ .02 𝑅𝑒𝛿
−1/6 power-law fit 

 

Next, evaluate 
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can use log-law or more simply a power law fit 
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𝜃 =
7

72
𝛿 = 𝜃(𝛿) 

 

 

 
Comparison of dimensionless laminar and turbulent flat-plate velocity 

profiles 

Note: cannot be used to 

obtain cf () since w →  
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72.9Re

6/1 
=

−
  

or 
1/70.16Rex

x

 −=  

7/6x  almost linear 
 

𝑐𝑓 =
0.027

𝑅𝑒𝑥
1/7

 

 

𝜏𝑤,𝑡𝑢𝑟𝑏 =
0.0135𝜇1/7𝜌6/7𝑈13/7

𝑥1/7   
 

w,turb decreases slowly with x, increases with  and U2 and insensitive to  
 

 

i.e., much faster 

growth rate than 

laminar 

boundary layer  
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𝐶𝐷 =
0.031

𝑅𝑒𝐿
1/7 =

7

6
𝑐𝑓(𝐿)     𝛿∗ =

1

8
𝛿        𝐻 =

𝛿∗

𝜃
= 1.3  
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These formulas are for a fully turbulent flow over a smooth flat 

plate from the leading edge; in general, give better results for 

sufficiently large Reynolds number ReL > 107. 

 
 

Alternate forms by using the same velocity profile u/U = (y/)1/7 

assumption but using an experimentally determined shear stress 

formula w = 0.0225U2(/U)1/4 are: 

 
𝛿

𝑥
= 0.37𝑅𝑒𝑥

−1/5
     𝑐𝑓 =

0.058

𝑅𝑒𝑥
1/5       𝐶𝐷 =

0.072

𝑅𝑒𝐿
1/5 

shear stress:    𝜏𝑤 =
0.029𝜌𝑈2

𝑅𝑒𝑥
1/5  

 

These formulas are valid only in the range of the experimental 

data, which covers ReL = 5  105  107 for smooth flat plates.  

 

Other empirical formulas are by using the logarithmic velocity-

profile instead of the 1/7-power law: 

 

   
𝛿

𝐿
= 𝑐𝑓(0.98 log 𝑅𝑒𝐿 − 0.732)  

 

   𝑐𝑓 = (2 log 𝑅𝑒𝑥 − 0.65)−2.3 

 

   𝐶𝐷 =
0.455

(log10 𝑅𝑒𝐿)2.58     

 
These formulas are also called as the Prandtl-Schlichting skin-

friction formula and valid in the whole range of ReL  109. 
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For these experimental/empirical formulas, the boundary layer is 

usually “tripped” by some roughness or leading-edge disturbance, to 

make the boundary layer turbulent from the leading edge. 

 

No definitive values for turbulent conditions since depend on 

empirical data and turbulence modeling. 

 

Finally, composite formulas that consider both the initial laminar 

boundary layer and subsequent turbulent boundary layer, i.e., in the 

transition region (5  105 < ReL < 8  107) where the laminar drag at 

the leading edge is an appreciable fraction of the total drag:  

 

𝐶𝐷 =
0.031

𝑅𝑒𝐿

1
7

−
1440

𝑅𝑒𝐿
      (Retrans = 5 x 105) 

 

𝐶𝐷 =
0.031

𝑅𝑒𝐿

1
7

−
8700

𝑅𝑒𝐿
      (Retrans = 3 x 106) 

 

𝐶𝐷 =
0.074

𝑅𝑒𝐿

1
5

−
1700

𝑅𝑒𝐿
     (Retrans = 5 x 105) 

 

𝐶𝐷 =
0.455

(log10 𝑅𝑒𝐿)2.58 −
1700

𝑅𝑒𝐿
    (Retrans = 5 x 105) 
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Local friction coefficient 𝑐𝑓 (top) and friction drag coefficient 𝐶𝐷 =

𝐶𝑓  (bottom) for a flat plate parallel to the upstream flow.  Lower 

case for skin friction and upper case for drag coefficient. 
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Fig. 7.6 Drag coefficient of laminar and turbulent boundary layers on 

smooth and rough flat plates.  
 

𝑐𝑓 = (2.87 + 1.58 𝑙𝑜𝑔
𝑥

𝜀
)−2.5 

𝐶𝐷 = (1.89 + 1.62 𝑙𝑜𝑔
𝐿

𝜀
)−2.5 

 

Again, shown on Fig. 7.6. along with transition region curves developed 

by Schlichting which depend on Ret =     5×105  

                                                                  3×106  

 

 

Fully rough flow 
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Momentum Integral Equations valid for BL solutions   

 

The momentum integral equation has the identical form as the laminar-

flow relation: 
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For laminar flow:  

 

( ,,HC f ) are correlated in terms of simple parameter  
2

edU

dx



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For Turbulent flow:  

 

( ,,HC f ) cannot be correlated in terms of a single parameter. 

Additional parameters and relationships are required that model the 

influence of the turbulent fluctuations. There are many possibilities all of 

which require a certain amount of empirical data. As an example, we 

will review the − method. 
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- Method 
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