

A SKIN-FRICTION ESTIMATION METHOD BASED ON TIME-RESOLVED TSP DATA AND A TAYLOR-HYPOTHESIS DERIVED ALGORITHM

GERMAN AEROSPACE CENTER

MASSIMO MIOZZI (CNR-INM, ROME - IT)

A (NOT SO) SHORT HYSTORY

CNR-INM (Rome, IT) & AS-EXV DLR (Gottingen, GE) cooperative efforts since 2015

Starting rationale: extension of aeronautic TSP to under-water conditions to go deeper inside (below) the inner Boundary Layer.

AKNOWLEDGEMENTS

Christian Klein, Marco Costantini, Lars Koop, Jonathan Lemarechal, Carsten Fuchs, Fabio Di Felice, Alessandro Capone, Lorenzo Fratto

REFERENCES

- > Capone, Klein, Di Felice, Beifuss, Miozzi (2015): Fast-response underwater TSP investigation of subcritical instabilities of a cylinder in crossflow. Experiments in Fluids 56:196
- > Capone, Klein, Di Felice, Miozzi (2016): Phenomenology of a flow around a circular cylinder at sub-critical and critical Reynolds numbers. Physics of Fluids 28, 074101
- Miozzi, Capone, Di Felice, Klein, Liu (2016): Global and local skin friction diagnostics from TSP surface patterns on an underwater cylinder in crossow. Physics of Fluids 28, 124101 (2016)
- > Miozzi, Capone, Costantini, Fratto, Klein, Di Felice (2019): Skin friction and coherent structures within a laminar separation bubble Experiments in Fluids (2019) 60:13
- Miozzi, Di Felice, Klein, Costantini (2020): Taylor hypothesis applied to direct measurement of skin friction using data from Temperature Sensitive Paint. Experimental Thermal and Fluid Science (2020), 110: 109913.
- > Miozzi, Capone, Klein, Costantini. Incipient stall characterization from skin-friction maps. International Journal of Numerical Methods for Heat and Fluid Flow, 31 (2)
- Costantini, Henne, Klein, Miozzi (2021): Skin-Friction-Based Identification of the Critical Lines in a Transonic, High Reynolds Number Flow via Temperature-Sensitive Paint Sensors, 21(15), 5106
- Miozzi, Costantini (2021): Temperature and skin-friction maps on a lifting hydrofoil in a propeller wake Meas. Sci. and Tech., 32 (11)
- M. Miozzi, G. Dubbioso, R. Muscari, M. Costantini (2022): Phase-resolved evolution of transition and critical loci on a lifting hydrofoil in a propeller wake. <u>34th Symposium on Naval</u> <u>Hydrodynamics. Washington, DC, USA, June 26 – July 1, 2022</u>

WHY ARE WE INTERESTED IN TSP?

Time and space resolved wall temperature T measurements

T statistics (in time)

Max of T standard deviation. Time and phase-averaged laminar turbulent transition location

Exact theory of steady 3D separation with min and max of T skewness. Time and phase-averaged separation and reattachment locations

T fluctuations (T') as a passive tracer

Relationship between u_{τ} and u_{T} , the celerity of propagation of T'.

Cross-correlation. Time and phase-averaged quantitative skin friction field.

Relaxation of the frozen turbulence condition. TH algorithm **Time and phase averaged quantitative skin friction field**

THE EASY, ROBUST WAY

QUANTITATIVE, TIME-AVERAGED, ROBUST

EXPLORE THE FLOW FROM THE POINT OF VIEW OF THE BODY SURFACE

TSP WORKING PRINCIPLE AND PROCESSING CHAIN

- The Europium-based TSP coating (Ondrus et al. 2015), properly excited, emits light whose intensity is directly dependent on the surface ٠ temperature: the higher the temperature, the lower is the emission (thermal quenching).
- Wavelength of emission is well separated from excitation (Stokes shift). ٠
- Temperature maps are extracted from the ratio between rearranged wind-on and wind-off images via calibration curve ٠

Calibrated output

for pressure &

temperature

FILTERING IN SPACE AND TIME

The original images are firsly filtered in time, with a spectral features preserving approach. Tool: Maxpol open-source package. Hosseini & Plataniotis (2017)

The time-filtered images are filtered again in space, with an edge-preserving approach. Each pixel is convolved with a deformed Gaussian kernel, compressed along the direction of the local maximum gradient and stretched along the normal one.

Tool : OpenCV library. Miozzi et al. (2019) Miozzi & Costantini (2021)

Miozzi, · Capone, Costantini, Fratto, Klein, Di Felice (2019) Skin friction and coherent structures within a laminar separation Bubble. Exp. in Fluids 60:13 (**M19**) Miozzi and Costantini (2021); Temperature and skin-friction maps on a lifting hydrofoil in a propeller. Wake. Meas. Sci. Technol. 32 114007 Hosseini & Plataniotis (2017): Derivative Kernels: Numerics and Applications. IEEE TRAN. ON IMAGE PROCESSING, 26 (10)

THE STRUCTURE OF THE VISCOUS SUBLAYER

Images from E74

Eckelmann H (1974). The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. Journal of Fluid Mechanics, 65(3)

Wall-normal propagation of disturbances at wall

- The instantaneous u'-fluctuations in the region $0 < y^+ < 5$ were very similar to the instantaneous fluctuations of the velocity gradient at the wall $\left(\frac{\partial u}{\partial y}\right)_0$.
- The u'-fluctuations in the flow, however, lead those at the wall in time. The propagation velocity for the perturbations travelling toward the wall was found to be equal to u_{τ} .

Skin-friction from TR TSP data and a Taylor-Hypothesis derived algorithm

Images from E74

WAVE PROPAGATION OF KINEMATIC QUANTITIES PERTURBATIONS

Skin-friction from TR TSP data and a Taylor-Hypothesis derived algorithm

Del Alamo and Jiménez. (2009): Estimation of turbulent convection velocities and corrections to Taylor's approximation. JFM 640, 5–26 (DJ09)

Geng et al. (2015): Taylor's hypothesis in turbulent channel flow considered using a transport equation analysis. PoF 27, 025111. (GE15)

 U_{pi} : i-th component of the celerity of propagation of the p-th fluid dynamic quantity (velocity, vorticity, pressure, temperature, etc.)

For $y^+ < 10$, U_{pi} is virtually constant, implying that perturbations of all flow variables propagate like waves near the wall.

THE "TAYLOR HYPOTHESIS"ALGORITHM: FROM FROZEN TO GRANITA-LIKE TURBULENCE

Definition of convection velocity dependence from spatial scale requires $k - \omega$ spectrum to associate velocity and wavelength.

DJ09 proposes a physically motivated definition which depends on spectral information in only one direction (either space or time) and on a local derivative in the remaining direction.

RMS minimization to identify the reference frame in which waves experience the least amount of change.

TSP IN FLUID DYNAMIC APPLICATIONS AT CNR-INM (ROME-IT)

Facility: CEIMM water tunnel 0.6%<Tu<1.5%

Features of the TSP coated surface

- Surface roughness: 0.09 μm (hydraulically smooth)
- Richardson number below the critical threshold for the existence of convective flows
- Biot number not uniform: $\rm T_w$ data are useful up to x/c<0.65

CEIMM TSPcavitation coated tunnel wing

LED lamps Fast

camera

(CMOS)

Thermostatic bath

Hydrofoil with NACA 0015 profile

Hydrofoil and cylinder in crossflow	Hydrofoil in propeller wake
 TSP acq. frequency: 1 kHz – 3 kHz Free stream Speed U_∞ :1.5 m/s Re: (chord=120mm): 1.8 × 10⁵ PHOTRON FASTCAM SA-X type 324K-M2 	 TSP acq. frequency: 1.5 kHz Free stream Speed U_∞: 3.4 m/s Re: (chord=120mm): 4.1 × 10⁵ 2 PHOTRON FASTCAM SA-X & SA-1 side by side INSEAN E779 rotation speed: 17 rps INSEAN E779 advance ratio J = U_∞/n_nD = 0.88

EXPERIMENTAL SET-UP

11

TIME EVOLUTION OF TSP MAPS

TEMPERATURE MAPS AND CRITICAL LINES AT 3°, 5°, 7° AND 10°

Note: in this slide critical lines of separation and reattachment are the *loci* of $\tau_x = 0$

Skin-friction from TR TSP data and a Taylor-Hypothesis derived algorithm

DLR

C_f PROFILE ON A NACA 0015 HYDROFOIL

Streamwise distance Δx set to \approx 3 mm (following **KH93**).

$$u_T = \frac{\Delta x}{\Delta t_{max}}$$
$$C_f = 2\left(\frac{u_\tau}{u_\infty}\right)^2 = 2\left(\frac{u_T/c}{u_\infty}\right)^2$$

Skin-friction from TR TSP data and a Taylor-Hypothesis derived algorithm

The ratio between distance Δx of two points and peak position Δt_{max} of the cross correlation of their time histories of temperature provides the celerity of propagation of temperature disturbances u_{pT} .

KH93: Kim J, Hussain F (1993) Propagation velocity of perturbations in turbulent channel flow. Phys Fluids A 5(3)

APPLICATION: THE NACA 0015 HYDROFOIL IN CROSSFLOW

Original u_{τ} maps contain only positive values. The u_{τ} sign is extracted in the aftermath. Details of C_f profile in reverse flow region within the LSB are shown in the inset.

Miozzi, Di Felice, Klein, Costantini (2020): Taylor hypothesis applied to direct measurement of skin friction using data from Temperature Sensitive Paint. Experimental Thermal and Fluid Science 110 109913

Skin-friction from TR TSP data and a Taylor-Hypothesis derived algorithm

comparison.

NACA 0015, $\alpha = 11.5^{\circ}$

Incipient stall at trailing edge.

Map of the fluctuating temperature $T'_w(x, t)$ over time

Time averaged skin friction topology by TH algorithm. Symultaneous presence of LSB and incipient stall at trailing edge.

ADVANCED ANALYSIS OF TSP DATA - ONR MEETING - 26.07.2023

NACA 0015, $\alpha = 12.2^{\circ}$

Large aspect ratio $\left(\frac{L}{c} \approx 4:1\right)$ stall cell.

Map of the fluctuating temperature $T'_w(x, t)$ over time

Time averaged skin friction topology by TH algorithm. The measurement captured one of the roots of a large aspect ratio stall cell. A symmetric companion is expected on the right, out of the picture.

NACA 0015, $lpha=13^\circ$

Small aspect ratio
$$\left(\frac{L}{C} \approx 2:1\right)$$
 stall cell.

Map of the fluctuating temperature $T'_w(x, t)$ over time

Time averaged skin friction topology by TH algorithm. The measurement captured a small aspect ratio stall cell.

APPLICATION: THE NACA0015 HYDROFOIL IN A PROPELLER WAKE

- Three main classes of vortical structures:
 - Hub vortex from propeller hub;
 - Tip vortices from propeller blades tip;
 - Foil vortex from propeller blade trailing edge

The hydrofoil with NACA 0015 profile is placed in the wake of an INSEAN E779A standard model propeller. **The profile is also at incidence (AoA=[0°, 4°, 8°])**

COUPLING OF PROPELLER WAKE AND HYDROFOIL LSB AT THE WALL. AOA=4°

Skin-friction from TR TSP data and a Taylor-Hypothesis derived algorithm

Two types of contributions to pressure field:

- 1. Due to the propeller spin
 - P_P^{\uparrow} : rise of pressure
 - P_P^{\downarrow} : decrease of pressure
- 2. Due to the hydrofoil's APG (incidence, shape)
 - P_A^{\uparrow} : rise of pressure
 - P_A^{\downarrow} : decrease of pressure

Map of $\bar{\sigma}(x)$ on suction (top) and pressure (bottom) hydrofoil's sides. Values of $\bar{\sigma}(x)$ <0.08 are blanked

Eight different sectors can be identified, four within the streamtube, four out of the streamtube

FRICTION VELOCITY ON A HYDROFOIL IN A PROPELLER WAKE. AOA=0°

Skin-friction from TR TSP data and a Taylor-Hypothesis derived algorithm

FRICTION VELOCITY ON A HYDROFOIL IN A PROPELLER WAKE. AOA=8°

PROPELLER WAKE SIGNATURE ON A NACA 0015 RUDDER SURFACE AT AOA=4°

CURRENT ACTIVITY

INM and DLR are developing a common application to study the flow over the surface of an elliptic profile (16% thickness) placed in a uniform cross-flow.

Dimensions: span 1000mm chord 200mm.

- The experiments have been conducted in the GWB water tunnel of the Technical University of Braunschweig (TU BS) in the framework of the DLR project ADaMant.
- Measurements of pointwise pressure and time resolved surface temperature (TSP) at different angles of attack and Re =240k and 500k.
- The GWB tunnel has laminar incoming flow conditions. A double set of measurements with and without a turbulence tripping system on the model has been performed.
- Incoming turbulence levels are unknown at present. Free-stream time-averaged quantities are available, including boundary layer conditions at the tunnel walls.
- RANS and URANS numerical tests are running at INM in Rome. LES activities are still pending

CONCLUSIONS

- Application of new methodologies allows 2D TSP measurements to describe coherent structures in remarkably complex flow conditions, like the flow on the surface of a hydrofoil embedded in a propeller wake or around a cube pierced at the wall and embedded in a turbulent boundary layer
- Skin friction from TSP criticisms: lack of experimental support on the relationships between U_T , U_U and U_{τ} . Dependency of the U_T estimation from the stencil adopted for differences.
- TSP highlights (i.e. molecular sensors potential):
 - Wide spatial extension
 - Impressive sampling frequency available in the future (up to 20 kHz, and even more...)
 - Potential player with leading role in wall flow analysis, also in choosing what to investigate, where, and when.
 - Candidate to became a powerful tool effective in scientific and industrial flow investigations

WHY WE WILL BE INTERESTED IN TSP? (continuing...)

"Distress not yourself if you cannot at first understand the deeper mysteries of Spaceland. By degrees they will dawn upon you."

- Edwin A. Abbott, Flatland: A romance in many dimensions

From temperature maps to 3D, near-wall flow structures

Miozzi, Capone, Di Felice, Klein, Liu (2016): **Global and local skin friction diagnostics from TSP** surface patterns on an underwater cylinder in crossow. <u>Physics of Fluids 28, 124101</u> (M16)

Thank you for your attention. Questions?

Massimo Miozzi