
 

Chapter 3 Solutions of the Newtonian Viscous-Flow 

Equations 

5. Unsteady flows 

a. Stokes 1st problem: sudden acceleration 

b. Diffusion vortex sheet 

c. Decay of a Line Vortex 

d. Stokes 2nd problem: steady oscillations 

e. Starting flow circular pipe 

f. Oscillating pressure gradient pipe flow 

g. Starting flow fixed/moving parallel walls. 

a and d are unsteady flows with moving boundaries, of 

which there are many additional solutions. 
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𝜇: 0.001𝑘𝑔/𝑚 𝑠 
𝜌: 1000kg/𝑚3 
𝜈: 1 × 10−6𝑚2/𝑠 

𝑈 = 1m/s 

𝒖 𝒚 
 = 𝟏 − 𝒆𝒓𝒇 ( 

𝑼 
  ) 

𝟐√𝝂𝒕 
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Diffusion vortex sheet 
 

First recall potential flow solution for vortex sheet. The point vortex singularity is 

important in aerodynamics, since, their distributions can be used to represent airfoils 

and wings. To see this, consider as an example of an infinite row of vortices: 
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Where ir  is radius from origin of ith vortex. 

 

Superposition infinite row equally spaced vortices of equal strength 

 

For ay   the flow approaches uniform flow with  
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+: below x axis 

-: above x axis 

Note: this flow is just due to infinite row of vortices and there isn’t any pure uniform 

flow   
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Potential Flow Vortex sheet: 
 

From afar (i.e. y  a ) looks like a thin sheet with velocity discontinuity. 

 

 

 
 
 

Define ==
a

K


2
strength of vortex sheet 

d  V d s =  (around closed contour) 

dx
a

K
dxuudxudxud ulul

2
)( =−=−=  

i.e.  
dx

d
= = Circulation per unit span 

Note: There is no flow normal to the sheet so that vortex sheet can be used to 

simulate a body surface. This is the basis of airfoil theory where we let )(x =  to 

represent body geometry. 
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𝜇: 0.001𝑘𝑔/𝑚 𝑠 
𝜌: 1000𝑘𝑔/𝑚3 
𝜈: 1 × 10−6𝑚2/𝑠 

𝑈 = 1m/s 

𝒚 
𝒖 = 𝑼𝒆𝒓𝒇 (  ) 

𝟐√𝝂𝒕 
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𝑢𝜃 =
𝛤

2𝜋𝑟
(1 − 𝑒−

𝑟2

4𝜈𝑡) 

 

𝜔𝑧 =
𝛤

4𝜋𝜈𝑡
𝑒−

𝑟2

4𝜈𝑡 

𝑢𝜃(0,0) = ∞ 
𝑢𝜃(0, 𝑡) = 0 

𝑢𝜃(∞, 𝑡) =
𝛤

2𝜋𝑟
→ 0 

 

𝜔𝑧(0,0) = ∞ 

𝜔𝑧(0, 𝑡) =
𝛤

4𝜋𝜈𝑡
 

𝜔𝑧(∞, 𝑡) = 0 
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𝑢𝜃 =
𝛤

2𝜋𝑟
𝑒−

𝑟2

4𝜈𝑡 

 

𝜔𝑧 = −
𝛤

4𝜋𝜈𝑡
𝑒−

𝑟2

4𝜈𝑡 

 

 
 

𝑢𝜃(0,0) = ∞ 
𝑢𝜃(0, 𝑡) = ∞ 
𝑢𝜃(∞, 𝑡) = 0 

 

𝜔𝑧(0,0) = −∞ 

𝜔𝑧(0, 𝑡) = −
𝛤

4𝜋𝜈𝑡
 

𝜔𝑧(∞, 𝑡) = 0 
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Width of diffusion layer as a function of time: viscous decay of an ideal vortex 
 

𝑢𝜃 =
𝛤

2𝜋𝑟
(1 − 𝑒−

𝑟2

4𝜈𝑡) 

𝑢𝜃

𝛤
2𝜋𝑟

= 0.95 = 1 − 𝑒−
𝑟2

4𝜈𝑡 

0.05 = 𝑒−
𝑟2

4𝜈𝑡 

log(0.05) ~ − 3.0 = −
𝑟2

4𝜈𝑡
 

𝑟~√12𝜈𝑡 = 3.46√𝜈𝑡 
 

Width of diffusion layer as a function of time: Line vortex suddenly introduced into fluid at rest 
 

𝑢𝜃 =
𝛤

2𝜋𝑟
𝑒−

𝑟2

4𝜈𝑡 

𝑢𝜃

𝛤
2𝜋𝑟

= 0.95 = 𝑒−
𝑟2

4𝜈𝑡 

0.95 = 𝑒−
𝑟2

4𝜈𝑡 

log(0.95) ~ − 0.05 = −
𝑟2

4𝜈𝑡
 

𝑟~√0.2𝜈𝑡 = 0.45√𝜈𝑡 
 

 
 
 
 
 

 
 
 
 
 
 
 

 

𝛿̇ → 0 as 𝑡 → ∞, i.e., rate of diffusion decreases over time 

 δ 𝛿̇ 
Diffusion of a 
vortex sheet 

5.52√𝜈𝑡 2.76√𝜈/𝑡 

Viscous decay of an 
ideal vortex 

3.46√𝜈𝑡 1.73√𝜈/𝑡 

Stokes’ first 
problem 

2.76√𝜈𝑡 1.38√𝜈/𝑡 

Sudden line vortex 0.45√𝜈𝑡 0.225√𝜈/𝑡 
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Stokes’ second problem: analysis of the extrema of the velocity field 
Velocity field: 

𝑈 = 𝑈0 cos(𝜔𝑡) − 𝑈0𝑒
−√

𝜔
2𝜈

𝑦
cos (𝜔𝑡 − √

𝜔

2𝜈
𝑦) 

Assume −√
𝜔

2𝜈
𝑦 = 𝑥 

𝑈 = 𝑈0 cos(𝜔𝑡) − 𝑈0𝑒𝑥 cos(𝜔𝑡 + 𝑥) 
𝑑𝑈

𝑑𝑥
= −𝑈0𝑒𝑥 cos(𝜔𝑡 + 𝑥) + 𝑈0𝑒𝑥 sin(𝜔𝑡 + 𝑥) = 0 

Divide by 𝑈0𝑒𝑥: 

− cos(𝜔𝑡 + 𝑥) + sin(𝜔𝑡 + 𝑥) = 0 
tan(𝜔𝑡 + 𝑥) = 1 

𝜔𝑡 + 𝑥 =
𝜋

4
+ 𝑘𝜋 → 𝑥 =

𝜋

4
+ 𝑘𝜋 − 𝜔𝑡 

Where 𝑘 = 0, ±1, ±2 … ± ∞. Substitute back for √
𝜔

2𝜈
𝑦: 

−√
𝜔

2𝜈
𝑦 =

𝜋

4
+ 𝑘𝜋 − 𝜔𝑡 

The condition for the location of the extrema is: 

√
𝜔

2𝜈
𝑦 =  𝜔𝑡 −

𝜋

4
− 𝑘𝜋 

Therefore, the velocity field has multiple local maxima/minima. For example, when 𝜔𝑡 =
0, the locations of the local extrema are: 

√
𝜔

2𝜈
𝑦 = −

𝜋

4
− 𝑘𝜋 

i.e.,  

√
𝜔

2𝜈
𝑦 = +∞, … ,

7

4
𝜋,

3

4
𝜋, −

𝜋

4
, −

5

4
𝜋, −

9

4
𝜋, … , −∞ 

For 𝑘 = −∞, … , −2, −1,0,1,2, … , +∞. 

The extrema for √
𝜔

2𝜈
𝑦 > 2𝜋 are difficult to see due to the damping effect of the 

exponential function. 
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If we only consider 0 < √
𝜔

2𝜈
𝑦 < 6, the local extrema are shown in the figure below.  

 

For −
4

6
𝜋 < 𝜔𝑡 < 0, the velocity field shows a local maximum, which moves 

towards smaller 𝑦 when 𝜔𝑡 increases its absolute value.  For − 𝜋 <  𝜔𝑡 <
4

6
𝜋, 

the local maximum moves to negative values of 𝑦, i.e., a region which is not 
physically interesting. Therefore, the next extremum is a minimum, as shown in the 
figure.  

1) The overshoot is located where the pressure gradient and viscous term have 

the same sign. 

2) The 𝑦 −location and amount of the overshoot depends on the value of 𝜔𝑡. 

3) The y-location should depend on the travelling wave concept. 

4) Explain the physics of the y-location and the amount of the maximum. 

5) All of the above need to be compared with Panton’s discussion. 

 

--- approximate mean 
location of the peaks 
--- exact mean 
location of the peaks 
 

1.57 1.68 
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Unsteady Fully Developed Pipe Flow 
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