
5.24 The tank shown is 4 m long, 3 m high, and 3 m wide, and it is closed except for a small opening at the right end. It contains oil (S = 0.83) to a depth of 2 m in a static situation. If the tank is uniformly accelerated to the right at a rate of 9.81 m/s², what will be the maximum pressure intensity in the tank during acceleration?

1/3-2 divertion p= enst.

$$\nabla p = -e(g_{2} + q_{1})$$
 $q = a_{x} = q_{2}$

$$\frac{\partial f}{\partial x} = -ea_{x} = -eg$$

$$\frac{\partial f}{\partial z} = -eg$$

 $0 = ton^{-1} \frac{dx}{5+4z} = ton^{-1} J = 0 = 45^{\circ}$ assume tar left of the ne equal $4 \times 1 \times 3 = \frac{1}{2} l^{2} \times 3 = 2 l = 58 = 7.8$

PB-PA = - es

$$P_{0}-P_{A}=-e_{g}(Z_{0}-Z_{A})$$
 $Z_{A}=0$
 $Z_{8}=-3$
 $P_{8}=P_{A}+3e_{g}$
 $Z_{8}=-3$
 $Z_{8}=-3$
 $Z_{8}=-3$
 $Z_{8}=-3$
 $Z_{8}=-3$
 $Z_{8}=-3$
 $Z_{8}=-3$
 $Z_{8}=-3$
 $Z_{8}=-3$

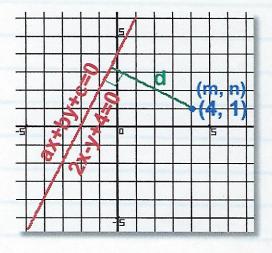
Distance From a Point to a Line

Method 5: Use a One-Step Formula

There is a formula that will give you the distance from a point to a line!

In order to use the formula, we'll need the equation of the line in the form ax + by + c = 0Our original line was y=2x+4; it rearranges to 2x - y + 4 = 0

The point is (4, 1)


The formula that gives the distance between a point (m, n) and a line ax + by + c = 0 is:

$$d = \frac{|am + bn + c|}{\sqrt{a^2 + b^2}}$$

Using a = 2, b = -1, c = 4, and m = 4, n = 1

$$d = \frac{|2\cdot 4 + -1\cdot 1 + 4|}{\sqrt{2^2 + 1^2}}$$

= 4.92

Method 5 gives an answer of 4.92 for the distance from point (4, 1) to the line y=2x+4

Z = MX = -X	
2(0) = 0 Z(L) = - Q = 58 = 2.83	
X + 2 = 0 point $(-(4-e), -4) = (-1.17, -3)$	
ax+by+ 2=0 (m,10) 9=1 m=-1.2	
$\lambda = 1$ $W = -3$	
$d = am + an + c \qquad c = 0$	
Ta2+32	
= 1 - 1.17 - 3- 1/ 12+12	
= 4.2/52	-
= 23 711	

$$\Delta \rho = \Delta S 8_0 \sqrt{2}$$

$$= 4.28_0$$

$$= 34,198 P/m^2$$