Course: ME 5160, Fall 2024

The exam is closed book and closed notes.

The power *P* generated by a certain windmill design depends upon its diameter *D*, the air density ρ , the wind velocity *V*, the rotation rate Ω , and the number of blades *n*.

(a) Write this relationship in dimensionless form using D, ρ , and V as repeating variables (note that *n* is already dimensionless and therefore can be used directly as one of the Pi groups).

(b) A model windmill, of diameter 50 cm, develops 2.7 kW at sea level for V = 40 m/s and when rotating at 4800 rev/min. A geometrically and dynamically similar prototype has diameter 5 m and operates in winds of 12 m/s at 2000 m standard altitude. What is the appropriate rotation rate, and the power delivered by the prototype? Use $\rho = 1.0067$ kg/m³ at 2000 m altitude and $\rho = 1.2255$ kg/m³ at sea level.

		Dimensions	
Quantity	Symbol	MLTO	FLT [®]
Length	L	L	L
Area	Α	L^2	L^2
Volume	V	L^3	L^3
Velocity	V	LT^{-1}	LT^{-1}
Acceleration	dV/dt	LT^{-2}	LT^{-2}
Speed of sound	a	LT^{-1}	LT^{-1}
Volume flow	Q	$L^{3}T^{-1}$	$L^{3}T^{-1}$
Mass flow	m	MT^{-1}	FTL^{-1}
Pressure, stress	p, σ, τ	$ML^{-1}T^{-2}$	FL^{-2}
Strain rate	ė	T^{-1}	T^{-1}
Angle	θ	None	None
Angular velocity	ω, Ω	T^{-1}	T^{-1}
Viscosity	μ	$ML^{-1}T^{-1}$	FTL^{-2}
Kinematic viscosity	ν	$L^{2}T^{-1}$	$L^2 T^{-1}$
Surface tension	Y	MT^{-2}	FL^{-1}
Force	F	MLT^{-2}	F
Moment, torque	M	$ML^{2}T^{-2}$	FL
Power	Р	ML^2T^{-3}	FLT^{-1}
Work, energy	W, E	ML^2T^{-2}	FL
Density	ρ	ML^{-3}	FT^2L^{-4}
Temperature	Т	Θ	Θ
Specific heat	C_p, C_v	$L^2T^{-2}\Theta^{-1}$	$L^2T^{-2}\Theta^{-1}$
Specific weight	γ	$ML^{-2}T^{-2}$	FL^{-3}
Thermal conductivity	k	$MLT^{-3}\Theta^{-1}$	$FT^{-1}\Theta^{-1}$
Thermal expansion coefficient	β	Θ^{-1}	Θ^{-1}

Course: ME 5160, Fall 2024

Solution

KNOWN: dimensional parameters, geometrical and dynamic similarity between model and prototype, $(D, \rho, V, \Omega, P)_m$, $(D, \rho, V)_p$

FIND: Pi groups, $(\Omega, P)_p$

ASSUMPTIONS: the problem is only a function of the above dimensional variables

ANALYSIS:

(a) For the function $P = f(D, \rho, V, \Omega, n)$ the appropriate dimensions are

$$\{P\} = \{M L^2 T^{-3}\}; \{D\} = \{L\}; \{\rho\} = \{M L^{-3}\}; \{V\} = \{L T^{-1}\}; \{\Omega\} = \{T^{-1}\}; \{n\} = \{1\}$$
(1.5)
$$n = 6$$
$$j = 3$$

$$k = n - j = 3$$
 (1)

Using repeating variables D, ρ , and V find the Pi groups:

$$\Pi_{1} = D^{a}\rho^{b}V^{c}P = \{(L)^{a}(ML^{-3})^{b}(LT^{-1})^{c}(ML^{2}T^{-3})\} = \{M^{0}L^{0}T^{0}\}$$
(0.5)

$$a = -2; \ b = -1; \ c = -3$$

$$\Pi_{1} = \frac{P}{\rho D^{2}V^{3}}$$
(1)

$$\Pi_{2} = D^{a}\rho^{b}V^{c}\Omega = \{(L)^{a}(ML^{-3})^{b}(LT^{-1})^{c}(T^{-3})\} = \{M^{0}L^{0}T^{0}\}$$
(0.5)

$$a = 1; \ b = 0; \ c = -1$$

$$\Pi_{2} = \frac{\Omega D}{V}$$
(1)

$$\Pi_{3} = D^{a}\rho^{b}V^{c}n = \{(L)^{a}(ML^{-3})^{b}(LT^{-1})^{c}(M^{0}L^{0}T^{0})\} = \{M^{0}L^{0}T^{0}\}$$
(0.5)

$$a = 0; \ b = 0; \ c = 0$$

$$\Pi_{3} = n$$
(1)

The dimensionless function is

$$\frac{P}{\rho D^2 V^3} = f\left(\frac{\Omega D}{V}, n\right)$$

(b) For the geometric similarity, the number of blades n (Π_3) is the same between model and prototype. For the dynamic similarity, model and prototype have the same advance ratio (Π_2).

$$\left(\frac{\Omega D}{V}\right)_{m} = \left(\frac{\Omega D}{V}\right)_{p} \quad \textbf{(1)}$$

$$\frac{(4800 \text{ rev/min})(0.5 \text{ m})}{(40 \text{ m/s})} = \frac{\Omega_{p}(5 \text{ m})}{(12 \text{ m/s})}$$

$$\Omega_{p} = 144 \text{ rev/min} \quad \textbf{(0.5)}$$

Model and prototype also have the same non-dimensional power (Π_1) .

$$\left(\frac{P}{\rho D^2 V^3}\right)_m = \left(\frac{P}{\rho D^2 V^3}\right)_p \quad \text{(1)}$$

$$\frac{(2700 \text{ W})}{(1.2255 \text{ kg/m}^3)(0.5 \text{ m})^2(40 \text{ m/s})^3} = \frac{P_p}{(1.0067 \text{ kg/m}^3)(5 \text{ m})^2(12 \text{ m/s})^3}$$

$$P_p = 5990 \text{ W} \approx 6 \text{ kW} \quad \text{(0.5)}$$