• Start Workbench from Start Menu

ANSYS Schematic Layout

- Drag 1 Geometry component

 Rename "pipe"
- Drag 2 Mesh component
 - o Rename 1 "Uniform"
- Drag 2 Fluent component
 - o Rename 1 "Laminar"
- Create Folder on H:Drive called *CFD Pre-Lab and Lab 1*
- Save project file in new folder and call it CFD Pre-Lab and Lab 1 Pipe Flow

Geometry Creation

- Check Default Unit Meter
- Sketching > Constraints > Auto Constraints: Check Cursor
- Create New Sketch on XY Plane and Look At
- Draw Rectangle and dimension as follows:
 - Length = 7.62m
 - Radius = 0.02619m
- Concept > Surface from Sketch > select Sketch 1 click Apply and Generate
- File > Save Project

Mesh Generation

- Insert > Mapped Face Meshing
- Insert > Sizing for top and bottom
 - No of Divisions = 453 Behavior = Hard No Bias
- Insert > Sizing for left and right
 - No of Divisions = 45 Behavior = Hard No Bias
- Generate Mesh
- Create Named Selection
 - o *inlet, outlet, wall,* and *axis*
- Update Mesh on Project Schematic

Solution Setup

- Change 2D Space to Axisymmetric
- Leave models as Laminar
- Change material properties as follows
 - **Density = 1.17**
 - Viscosity = **1.872e-05**
- Cell zone conditions change to fluid Air
- Change boundary conditions as follows
 - Inlet Velocity = 0.2
 - Outlet Pressure = 0
 - o Wall stays the same
 - Operating Conditions = 97225.9
- Change **Reference Values** as follows:
 - Area = 0.002154869
 - **Density = 1.17**
 - Length = 0.05238
 - Temperature = 298.16
 - Inlet Velocity = 0.2
 - Viscosity = **1.872e-05**
- Solution Methods
 - o Green Gauss Cell Based
 - o Second Order
 - o Second Order Upwind
- Monitors
 - All three eqns = 1e-06
- Solution Initialization
 - o Standard
 - Axial Velocity = 0.2
- Run Calculation
 - Number of Iterations = 1000

Data to save

- Residuals image
- Centerline pressure distribution image
- Centerline velocity distribution image
- Wall friction factor distribution image
- Export wall friction factor distribution and calculate shear stress C=8*t/(rho*U^2) AFD value is 0.097747231
- Axial velocity with AFD image

Surface Name	XO	YO	X1	Y1
x=10d	0.5238	0	0.5238	0.02619
x=20d	1.0476	0	1.0476	0.02619
x=40d	2.0952	0	2.0952	0.02619
x=60d	3.1428	0	3.1428	0.02619
x=100d	5.238	0	5.238	0.02619

- Export velocity profile at x=100d and normalize it then save image
- Contours of radial velocity
- Velocity vector at region where flow is becoming fully developed