Extract BC from EFD Data Reduction Sheet

- Calculate inlet velocity from venturi meter flow rate measurement
- Outlet pressure is pressure measurement at tap #4

ANSYS Schematic Layout

- Drag 1 Geometry component
 - o Rename "pipe"
- Drag 2 Mesh component
 - o Rename 1 "non-uniform"
- Drag 2 Fluent component
 - o Rename 1 "turbulent"
- Create Folder on H:Drive called *CFD Lab and Lab* 1
- Save project file in new folder and call it Lab 1

Geometry Creation

- Select Meter
- Create New Sketch on XY Plane and Look At
- Draw Rectangle and dimension as follows:
 - Length = 6.096m
 - o Radius = 0.02619m
- Concept > Surface from Sketch > select Sketch 1 click Apply and Generate
- File > Save Project

Mesh Generation

- Insert > Mapped Face Meshing
- Insert > Sizing for top and bottom
 - No of Divisions = 564
 - Behavior = Hard
 - Bias Type =No Bias
- Insert > Sizing for left and right
 - No of Divisions = 15
 - Behavior = Hard
 - Bias Type =Fine on wall

- Bias Factor =3.1117
- Generate Mesh
- Create Named Selection
 - o *inlet, outlet, wall,* and *axis*
- Update Mesh on Project Schematic

Solution Setup

- Change 2D Space to Axisymmetric
- Models is k-e model with default parameters
- Use average measured temperature to calculate density and viscosity
- Cell zone conditions change to fluid Air
- BC: axisymmetric, measured inlet velocity, outlet pressure, and given wall roughness
 - Inlet: measured inlet velocity, turbulent intensity=0.01%, turbulent length scale=0.000294m
 - **Outlet:** measured pressure at tap4, turbulent intensity=5%, turbulent viscosity ratio=10
 - Wall: no-slip, roughness=2.5e-5m, roughness constant=0.5
 - o Axis: symmetry
 - Operating conditions: reference pressure is 97225.9
 Pa
- Change Reference Values as follows:
 - Area = 0.002154869
 - Density = Based on Measured Temperature
 - Length = 0.05238
 - Temperature = Measured
 - Inlet Velocity = Based on Measured Temperature
 - Viscosity = Based on Measured Temperature
- Solution Methods
 - o Green Gauss Cell Based

o Second Order schemes for all equations

- Monitors
 - All three eqns = **1e-06**
- Solution Initialization
 - o Standard
 - Measured inlet velocity and outlet pressure
 - Turbulent kinetic energy=0.09m^2/s^2
 - Turbulent dissipation rate=16m^2/s^3
- Run Calculation
 - Number of Iterations = 1000

Data to save

- Residuals image
- Centerline pressure with EFD image
- Centerline velocity distribution image
- Wall shear stress distribution image
- Export wall friction factor distribution and calculate shear stress C=8*t/(rho*U^2)
- Axial velocity with EFD image

Surface Name	XO	YO	X1	Y1
x=10d	0.5238	0	0.5238	0.02619
x=20d	1.0476	0	1.0476	0.02619
x=40d	2.0952	0	2.0952	0.02619
x=60d	3.1428	0	3.1428	0.02619
x=100d	5.238	0	5.238	0.02619

• Export velocity profile at x=100d and normalize it then save image

- Contours of radial velocity
- Velocity vector at region where flow is becoming fully developed
- Image of normalized CFD laminar and turbulent velocity profile at the developed region