
ME:5160 (58:160) Intermediate Mechanics of Fluids 

Fall 2024 – HW6 Solution 

 

P4.2 Flow through the converging nozzle in Fig. P4.2 can be approximated by the one-dimensional 

velocity distribution 

 

 

 

 

 

 

 

 

 

 

 

(a) Find a general expression for the fluid acceleration in the nozzle. (b) For the specific case Vo 

= 10 ft/s and L = 6 in, compute the acceleration, in g’s, at the entrance and at the exit. 

 

 

Solution: Here we have only the single ‘one-dimensional’ convective acceleration: 
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At x = 0, du/dt = 400 ft/s2 (12 g’s); at x = L = 0.5 ft, du/dt = 1200 ft/s2 (37 g’s). Ans. (b) 

 

 

 

 

 

 



P4.27 A frictionless, incompressible steady-flow field is given by 

V = 2xyi – y2j 

in arbitrary units. Let the density be o = constant and neglect gravity. Find an expression for the 

pressure gradient in the x direction. 

Solution: For this (gravity-free) velocity, the momentum equation is 
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P4.80 An oil film drains steadily down the side of a vertical wall, as shown. After an initial 

development at the top of the wall, the film becomes independent of z and of constant thickness. 

Assume that w = w(x) only that the atmosphere offers no shear resistance to the film. (a) Solve 

Navier-Stokes for w(x). (b) Suppose that film thickness and [ w/ x] at the wall are measured. 

Find an expression which relates  to this slope [ w/ x]. 

 

 

 

 

 

Solution: First, there is no pressure gradient  p/ z because of the constant-pressure atmosphere. 

The Navier-Stokes z-component is (d2w/dx2) = g, and the solution requires w = 0 at x = 0 and 

(dw/dx) = 0 (no shear at the film edge) at x = . The solution is: 
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The wall slope is dw/dx / , rearrange [ / | ] . (b)/wall wallg : g dw dx Ans     = − = −  

 

 

 

 

 

 

 



P4.36 A constant-thickness film of viscous liquid flows in laminar motion down a plate 

inclined at angle , as in Fig. P4.36. The velocity profile is 

u = Cy(2h – y) v = w = 0 

(a) Find the constant C in terms of the specific weight and viscosity and the angle . (b) Find the 

volume flow rate Q per unit width in terms of these parameters. 

 

  

Fig. P4.36 

Solution: There is atmospheric pressure all along the surface at y = h, hence p/x = 0. The x-

momentum equation can easily be evaluated from the known velocity profile: 
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P4.88 The viscous oil in Fig. P4.88 is set into steady motion by a concentric inner cylinder 

moving axially at velocity U inside a fixed outer cylinder. Assuming constant pressure and 

density and a purely axial fluid motion, solve Eqs. (4.38) for the fluid velocity distribution vz(r). 

What are the proper boundary conditions? 

 

 

 

 

 

 

 

 

 

 

 

Fig. P4.88 

 

 

Solution: If vz = fcn(r) only, the z-momentum equation (Appendix E) reduces to: 
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The solution is vz = C1 ln(r) + C2, subject to vz(a) = U and vz(b) = 0 

Solve for C1 = U/ln(a/b) and C2 = –C1 ln(b) 

The final solution is: .Ans=z
ln(r/b)
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C4.2 A belt moves upward at velocity V, dragging a film of viscous liquid of thickness h, as in 

Fig. C4.2. Near the belt, the film moves upward due to no-slip. At its outer edge, the film moves 

downward due to gravity. Assuming that the only non-zero velocity is v(x), with zero shear stress 

at the outer film edge, derive a formula for (a) v(x); (b) the average velocity Vavg in the film; and 

(c) the wall velocity VC for which there is no net flow either up or down. 

(d) Sketch v(x) for case (c). 

Solution: (a) The assumption of parallel flow, u = w = 0 and v = v(x), satisfies continuity and 

makes the x- and z-momentum equations irrelevant. We are left with the 

y-momentum equation: 

 

Fig. C4.2 
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There is no convective acceleration, and the pressure gradient is negligible due to the free 

surface. We are left with a second-order linear differential equation for v(x): 
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At the free surface, x = h,  = (dv/dx) = 0, hence C1 = –gh/. At the wall, v = V = C2. The 

solution is 
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(b) The average velocity is found by integrating the distribution v(x) across the film: 
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(c) Since hvavg  Q per unit depth into the paper, there is no net up-or-down flow when 
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(d) A graph of case (c) is shown below. Ans. (d) 



 


