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Abstract 

 

Fluid flow on an inclined channel is considered. The effect of gravity and the 

friction of the fluid to the bottom wall is included in the model, so that we have a 

system of partial differential equations of fluid depth and averaged depth velocity. 

From the balancing between those two forces, the model is derived and is then 

solved analytically for kinematic wave and numerically. Both types of solution can 

be compared, and the kinematic wave is a special case of the numerical solution, 

i.e. for Froude number 2F  . 
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1 Introduction 
 

Fluid flow is a physical phenomena that is often seen in our daily life such as in 

channel. Gravity is one of forces that can make the fluid flows on an inclined 

channel. In this paper we concern a mathematical model of that flow. Based on 

mass and momentum conservations, we formulate the 2-D flow into a system of 

partial differential equations. The effect of the gravity and the bottom friction of the 

wall are investigated in propagating waves on the fluid surface.  

The derivation of the model can be formulated basically from a control volume, 

such as given in Whitham [1], or can be obtained from Euler equation, see for 

example Chow [2]. The conventional model such problem is shallow water 

equation. The derivation of that model can be seen in Chaudhry [3], the theory is so 

named because the flow in which the vertical dimensions are small compared to the 

horizontal dimensions.  

Meanwhile, for flow on an inclined wall the vertical velocity can not be ignored 

as the gravity plays an important roll in accelerating the flow, but it is also important 

to include the resistant effect from the wall. These two forces should be involved in  
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shallow water model, and we concern to the augmented model of shallow water 

equation. The Chezy formula is used to represent the resisted force, proportional to 

the horizontal velocity. Dressler [4] worked on that model to show that the uniform 

flow becomes unstable when the Froude number F  exceeds 2, i.e. waves are 

formed on the surface for that Froude number. Dressler was able to show that 

condition and found a one-parameter family of solutions. This was then extended 

by Needham & Merkin [5] for the model by including the effect of the energy 

dissipation. They obtained periodic solutions. 

Since the model is strongly nonlinear, it is not easy to be solved analytically and 

numerically. To simplify the problem, solution near the constant one is considered 

so that the model becomes linear for the first order, and it is solved numerically by 

a finite difference method. Similar problem has been done by Wiryanto & 

Mungkasi [6, 7], but for wave generation phenomena. Our numerical solution 

confirms to the condition for Froude number greater than 2, and for tends to 

kinematic wave as Froude number is two. 

 

2 Formulation 
 

We consider fluid flow on an inclined wall of angle α  to the horizontal line, 

illustrated in Figure 1. We choose Cartesian coordinates with x -axis along the 

bottom and the y -axis perpendicular to x -axis, so that the fluid surface is 

 , ty h x , measured from the bottom. 

 

 
 

Figure 1. Sketch of the flow and coordinate 

 

Now, we take a small fluid element  1 2,x x x . The mass conservation of fluid 

for that element can be written 
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and the momentum conservation  
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We do not write the fluid density ρ  in the equations as it is a factor in each term, 

so that we can cancel it. The third term of (2) represents the net total pressure force, 

the first term in the right hand side is the gravitational force down the incline and 

the second in the right term is the frictional effect of the bottom with friction 

coefficient fC . Note that v  is the mean velocity. 

In this model we assume that h  and v  are continuously differentiable, so that 

when we take the limit 2 1 0x x  , and we use the relation in the mass 

conservation to the other equation, so that (1) and (2) become  

  0,

' ' ,

t x

t x x f

h hv

v
v vv g h g S C

h

 



   


            (3) 

where ' cosg g α  and tanS α .  

In case the left hand side of the momentum conservation is neglected, we obtain 

the relation between h  and v  
1
2' 1/2g S

v h
C f

 
 
 
 

. 

This is then substituted to the first equation giving  
1
23

2
0t xh k h h                  (4) 

where 

1/2
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f
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k
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, as the equation of kinematic wave approximation. This 

equation is still difficult to be solved, but we can approximate the solution near the 

constant h , by writing    0 1, ,h x t h εh x t   for constant 0h  and it is perturbed 

by small term containing  1 ,h x t . So that we have 

 
3 1/2

1 0 1
2

h kh h O ε
t x
                 (5) 

Analytically, we can obtain the solution, depending on the initial condition. If at the 

beginning it is given    , 0h x f x , say    1f x h εf xo  , the solution of (5) is 

  1/2

1 1 0

3
,

2
h x t f x kh t

 
  

 
 

The wave profile does not change by increasing time t , but it just travels with wave 

speed 
1/23

02
c kh  to the right as the coefficient 

1/23
02

kh  is positive. This type of 

solution is then compared to the solution of full equation (3), but it is required to be 

solved numerically, presented below. 

 

3 Numerical Procedure 
 

We solve (3) in this section. To do so, we determine the solution near the constant 

solution, namely 0h  and 0v , satisfying  
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We write similar to the kinematic wave approximation 
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for small parameter ε , and we substitute to (3) so that we obtain 

1 0 1 0 1
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Note that the last term of the second equation of (3) is approximated by Taylor 

series.  

The next step is we non-dimensionalize the variables in (7) based on the constant 

solution, by defining 

01 1

0 0 0 0

, , ,
v th v x

η w x t
h v h h
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When we apply this to (7) we have 
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where 0

0'

v
F

g h
  is Froude number, and we write x  and t  without bar to 

simplify in writing.  

In solving (8) we discretize the space , j 0,1,2, , Jjx j x     and time 

, 0,1,2,nt n t n    , and we use notation    , , ,n n

j j n j j nη η x t w w x t  . 

Equation (8) is discretized by forward time backward space, so that we have explicit 

formulation 
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As the initial condition we use 0 00, 0j jη w   indicating at the beginning the flow 

is uniform. Beside that we need boundary condition for 0

nη  and 0

nw . Based on the 

kinematic wave approximation, they satisfy  
1

0 02

n nw η  

so that to simulate the wave propagation, we need only the boundary condition for 

0

nη .   
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4 Numerical Simulation 
 

The numerical procedure described above is used to simulate the wave propagation 

at the fluid surface on an inclined wall. Most of our calculations use 1000J  , 

0.1dx   and 2 / 3dt dx  based on the kinematic wave approximation, where we 

found the characteristic line is 3
2

constantx t  , after scaling the variables. This 

is important to get the stable calculation. 

Figure 2 is typical wave propagation for 0.2α   radian  0.0035S  , 3.5F 

. The boundary condition is  

 
 0.1sin 0.157 , 0 10

0,
0.1, 10

t t
η t

t

 
 


                 (9) 

We plot  ,η x t  for some values t  at the same plane by shifting upward for 

greater t . So, we can see as the surface disturbed by a part of a sinusoidal wave, it 

propagates to the right. Even the maximum elevation of the incoming wave is 0.1, 

but the front wave reaches greater than that. 

We can compare the wave propagation for different F . We plot the previous 

result at a certain time  , 53.6η x  together with another calculation for 6.5F  . 

We found that greater Froude number produces higher front wave, but propagates 

slower. We show in Figure 3. For other values Froude number, we observe and 

found that the numerical procedure is able to calculate solutions for 2F  , and is 

fail below that number. This is indicated by the front wave that is no greater than 

the maximum amplitude. 

We can also compare with different angle α . Steeper wall produces higher front 

wave and propagating faster, the effect of gravity playing on important role. 

Meanwhile the friction coefficient fC  is similar to the Froude number as it is 

proportional and presented as F , following (6). 

 

 
Fig. 2. Plot of wave propagation  ,η x t  as the solution of (8) for 3.5F   and 

0.2α  , using boundary condition (9). 
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Fig. 3. Plot  , 53.6η x  for different Froude number 3,5F   smaller front wave 

and 6.5F  . 

 

 

5 Conclusion 
 

A model of flow on an inclined wall has been derived based on mass and 

momentum conservations by including the bottom friction. The analytical 

kinematic wave is obtained, and it is then used to construct the discretization of the 

numerical procedure of the model. The simulation confirms that the solution is 

obtained for Froude number greater than 2, and when Froude number tends to 2 the 

solution tends to the kinematic wave. 
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