Chapter 7

Motivation. This chapter is devoted to “external” flows around bodies immersed in a
fluid stream. Such a flow will have viscous (shear and no-slip) effects near the body
surfaces and in its wake, but will typically be nearly inviscid far from the body. These
are unconfined boundary-laver flows.

The technique of boundary-layer (BL) analysis can be used to compute viscous effects
near solid walls and to “patch™ these onto the outer inviscid motion. This patching is
more successful as the body Reynolds number becomes larger, as shown in Fig. 7.1.

In Fig. 7.1 a uniform stream U moves parallel to a sharp flat plate of length L. If
the Reynolds number UL/v is low (Fig. 7.1a). the viscous region 1s very broad and ex-
tends far ahead and to the sides of the plate. The plate retards the oncoming stream
greatly, and small changes in flow parameters cause large changes in the pressure dis-
tribution along the plate. Thus, although in principle it should be possible to patch the
viscous and inviscid layers in a mathematical analysis, their interaction 1s strong and
nonlinear [1 to 3]. There is no existing simple theory for external-flow analysis at
Reynolds numbers from 1 to about 1000. Such thick-shear-layer flows are typically
studied by experiment or by numerical modeling of the flow field on a digital com-
puter [4].

A high-Reynolds-number flow (Fig. 7.1b) is much more amenable to boundary-layer
patching, as first pointed out by Prandtl in 1904. The viscous layers, either laminar or
turbulent, are very thin. thinner even than the drawing shows. We define the boundary-
layer thickness & as the locus of points where the velocity u parallel to the plate reaches
99 percent of the external velocity U.
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Fig. 7.1 Comparison of flow past a
sharp flat plate at low and high
Reynolds numbers: (@) laminar,
low-Re flow; (b) high-Re flow.
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For slender bodies, such as plates and airfoils parallel to the oncoming stream. we
conclude that this assumption of negligible interaction between the boundary layer and
the outer pressure distribution 1s an excellent approximation.

For a blunt-body flow, however, even at very high Reynolds numbers, there is a dis-
crepancy in the viscous-inviscid patching concept. Figure 7.2 shows two sketches of
flow past a two- or three-dimensional blunt body. In the idealized sketch (7.2a), there
i5 a thin film of boundary layer about the body and a narrow sheet of viscous wake in
the rear. The patching theory would be glorious for this picture, but it is false.

Beautifully behaved

but mythically thin

boundary layer
and wake

The theory of strong interaction between blunt-body viscous and inviscid layers is
not well developed. Flows like that of Fig. 7.2k are normally studied experimentally.

Rey= 10°

—

Outer stream grossly
(a) perturbed by broad flow
separation and wake

Thin front
boundary layer

Fig. 7.2 Mustration of the strong
interaction between viscous and in-
viscid regions in the rear of blunt-
body flow: (a) idealized and defi-
nitely false picture of blunt-body
flow: (b) actual picture of blunt-
body flow.
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1.2 Momentum-Integral !
Estimates U :
. . . i pP=p
CV analysis (laminar or turb.) gives: - ! &(x) _ -
- —_—-— - F——/]
Aix) - - -
Dw=pb[ wU-wdy (12) 1 - —
0 N e T (X) = ulx, vl
Kirman's Analvsis of the et T TR T T
Flat Plate
x=0 =1L

Equation (7.2) was derived in 1921 by Kdrmin [7]. who wrote it in the convenient form
of the momentum thickness #

&
D) = phl?8 6= L % (1 - %] dy (13)

Momentum thickness is thus a measure of total plate drag. Kiarmin then noted that the
drag also equals the integrated wall shear stress along the plate

Dix)=b J ) T,lx) dx
0

or L~ b, (7.4)
Meanwhile, the derivative of Eq. (7.3), with I = constant, is

dl} + dfl

£ — bl L

dx P dx

By comparing this with Eq. (7.4) Kiarmin armved at what 1s now called the momentum-
integral relation for flat-plate boundary-layer flow

B II'JIT.: df P

4
X

It is valid for either laminar or turbulent flat-plate flow.
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Another interesting effect of a boundary layer is its small but finite displacement of
the outer streamlines. As shown in Fig. 7.4, outer streamlines must deflect outward a

Displacement Thickness

distance &*(x) to satisfy conservation of mass between the inlet and outlet v y=h+8* L U
h 5 u - "
[ pUbdy=[ pubdy 5=h+s" (7.11) o=k - 1
0 . » T Outer streamline 7 i
The quantity 6* is called the displacement thickness of the boundary layer. To relate it i T u J
to u(y), cancel p and b from Eq. (7.11), evaluate the left integral, and slyly add and LN S A —— -
. . 0 Simulated
subtract U/ from the right integrand: B effect
5 5
Uh = J (U+wu—Uydy=Ulh+ 8% + J (w — U) dy Fig. 7.4 Displacement effect of a
o o boundary layer.
3
or 5= (1 —i]dr (7.12)
(Y uj -

Thus the ratio of §%/6 varies only with the dimensionless velocity-profile shape w/U.

Karman’s laminar BL approximate solution:

To get a numerical result for laminar flow, Kirmin assumed that the velocity pro-
files had an approximately parabolic shape

2 , 2
ulx, v) = U(E} — %) 0= y=24(x) (7.6)
Using the velocity profile he found the BL thickness, the shear-stress, and the momentum thickness as:
f gy \ 12 5 2 12

EES‘.S i — —5]_’ {:r_z—L‘--T_‘ == i ] = ﬂ-?:i = l'E_}

X Llr-r R‘:I‘l_ pU_ RC,. ¥ RC;' Rd;’z
which are only 10% higher than the exact solution for laminar flat-plate flow (shown later). F* = 1 &

3

The dimensionless quantity ¢y called the sﬁ:in—fn'c-'ﬁmi coefficient, is analogous to the friction factor f in ducts.
Since 6* is much smaller than x for large Re, and the outer streamline slope V/U is proportional to 8% we conclude

that the velocity normal to the wall is much smaller than the velocity parallel to the wall. This 1s a key assumption in boundary-layer theory
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7.3 The Boundary-Layer
Equations

Derivation for Two-Dimensional
Flow

the complete equations of motion consist of continuity and the x- and y-momentum relations

du | dv _

0 7.14
ax dy ( a)
du ou ap A u . Au
ax V)T e M2 T a2 7.14b
p(_“ ax H}-‘) ix ”( i a}-l) (7:140)
du au ap v du
Pl Bl v e 7.14
p(u o Y a;.-) oy #( P H},_.) (7.14¢c)

In 1904 Prandtl correctly deduced that a shear layer must be very thin if the Reynolds
number is large, so that the following approximations apply:
Velocities: v=u
il 8’
Rates of change: du o ou dv v L; : —L;
dx dy dx dy ax ay
Applying these approximations results in a powerful simplification

ap _ 0
v
In other words, the y-momentum equation can be neglected entirely, and the pressure
varies only along the boundary layer, not through it. The pressure-gradient term %2

is assumed to be known in advance from Bernoulli’s equation applied to the o
outer inviscid flow

or p = plx) only

dxr  dx dx
Presumably we have already made the inviscid analysis and know the distribution of
Uix) along the wall (Chap. 8).
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The net result is that the three full equations of motion (7.14) are reduced to Prandtl’s
two boundary-layer equations

L du v . -
Continuity: —+—=1 (7.19a)
0x oy
i au - dlJ | ot -
Momentum along wall u— t+tv—=0U0—+—— (7.195)
ax ah dx p dy
I'-'Ill".' . -
L laminar flow
rl_‘.
where r ="
du —
pm— — pu'v turbulent flow

ay

These are to be solved for u(x, v) and v(x, v). with U(x) assumed to be a known func-

tion from the outer inviscid-flow analysis. There are two boundary conditions on & and
one on

Aty =0 (wall): u=v=1>0 (no slip) (7.20a)
At v = 6(x) (outer stream): u = U(x) (patching) (7.20k)

Unlike the Navier-Stokes equations (7.14), which are mathematically elliptic and must
be solved simultaneously over the entire flow field, the boundary-layer equations (7.19)
are mathematically parabolic and are solved by beginning at the leading edge and
marching downstream as far as you like. stopping at the separation point or earlier if
you prefer.”
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7.4 The Flat-Plate Boundary
Layer

Laminar Flow

For laminar flow past the plate, the boundary-layer equations (7.19) can be solved ex-
actly for u and v, assuming that the free-stream velocity U is constant (dU/dx = 0).
The solution was given by Prandtl’s student Blasius, in his 1908 dissertation from Gét-
tingen. With an ingenious coordinate transformation, Blasius showed that the dimen-

sionless velocity profile w/L7 is a function only of the single composite dimensionless
variable (w)[U/(zx)]"*:

w _ju\e
;=Im n—%m) (721)

where the prime denotes differentiation with respect to n. Substitution of (7.21) into

the boundary-layer equations (7.19) reduces the problem, after much algebra, to a sin-
gle third-order nonlinear ordinary differential equation for f

M+if =0 (7.22) Table 7.1 The Blasius Velocity
Profile [1 to 3]
The boundary conditions (7.20) become
Aty =0 fO)=f(0)=0 (123q) U™ ull L) ull
) 0.0 00 2.8 0.81152
0.2 0.06641 30 0.84605
Asy — oo fi(=)— 1.0 (7.23b) 04 0.13277 32 0.87609
0.6 019894 34 0.90177
This is the Blasius equation, for which accurate solutions have been obtained only by 0.8 026471 16 0.02333
numerical integration. Some tabulated values of the velocity-profile shape f(n) = w/U 1.0 0.32979 3.8 0.94112
are gi"r’f.'.'ﬂ in Table 7.1 1.2 0.39378 4.0 0.95552
; o .. 1.4 0.45627 42 0.96606
Since w/l/ approaches 1.0 only as v — 2o, 1t 1s customary to select the boundary- 16 0.51676 44 0.07587
layer thickness & as that point where w/l/ = 0.99. From the table, this occurs at ) = 18 0.57477 46 0.98269
5.0: 20 0.62077 48 0.98779
o . . 2.2 0.68132 50 0.99155
s (V" Z 50 24 0.72899 = 1.00000
W% ‘ 26 0.77246
& 5.0 ) .
or — == Blasius (1908) (7.24)

T 177
X RL‘!_' -
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With the profile known, Blasius, of course, could also compute the wall shear and dis-
placement thickness
0.664 a* 1.721

Cr= S am = D am (7.25)
Rey - X Rey-

D.332 172 lf:ul.ﬁ
T(x) = £ ,1'”’;

D) =b | 7,(x) de = 0.664bp 2 20"
0

2D(L) |.328
Cp="—"7"5"=—"— — = (L)
7 pUPbL Re;” :
This can be rewritten in terms of the momentum thickness at the trailing edge
26(L)
Cp=—"7—
P L

Computation of # from the profile w/U or from Cp, gives
I

o 0.664 ]

X R laminar flat plate
Since & is so ill defined, the momentum thickness, being definite, is often used to cor-
relate data taken for a variety of boundary layers under differing conditions. The ratio
of displacement to momentum thickness, called the dimensionless-profile shape fac-

tor, 1s also useful in integral theories. For laminar flat-plate flow
a*  1.721
H=—=—"-—-=259 7.31
8 0664 (1.3D)

A large shape factor then implies that boundary-layer separation 1s about to
OCCUT.

Seventh
root profile,
Eqg. (7.39)

0.4 Exact Blasius profile

for all laminar Re,

(Table 7.1)
02—
Parabolic
approximation,
Eq. (7.6)
0 | | | |
0.2 0.4 0.6 0.8

¥
&

Fig. 7.5 Comparison of dimension-
less laminar and turbulent flat-plate
velocity profiles.
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Transition to Turbulence The laminar flat-plate boundary layer eventually becomes turbulent, but there is no
unique value for this change to occur. With care in polishing the wall and keeping the
free stream quiet, one can delay the transition Reynolds number to Re. = 3 E6 [8].
However, for typical commercial surfaces and gusty free streams, a more realistic value
is Re,, = 5 E5.

Turbulent Flow There is no exact theory for turbulent flat-plate flow, although there are many elegant
computer solutions of the boundary-layer equations using various empirical models for
the turbulent eddy viscosity [9]. The most widely accepted result is simply an integal
analysis similar to our study of the laminar-profile approximation (7.6).

We begin with Eq. (7.5), which is valid for laminar or turbulent flow. We write it
here for convenient reference:

) = pt2 40 (1.32)
dx
From the definition of ¢; Eq. (7.10), this can be rewritten as
dd
=2 — 7.33
cr i ( )

Now recall from Fig. 7.5 that the turbulent profiles are nowhere near parabolic. Going
back to Fig. 6.9, we see that flat-plate flow is very nearly logarithmic, with a slight
outer wake and a thin viscous sublayer. Therefore, just as in turbulent pipe flow, we
assume that the logarithmic law (6.21) holds all the way across the boundary layer

- \ 112
n Y+ B ur= (LL) (7.34)
with, as usual, k = 041 and B = 5.0. At the outer edge of the boundary layer, v =8

and u = U, and Eq. (7.34) becomes

i *
:—$=%In%+8 (1.35)

But the definition of the skin-friction coefficient, Eq. (7.10), is such that the following

identities hold:
(9 12 * 12
U _ (;) du* _ Reﬁ{i) (7.36)

u* cr v 2

Therefore Eq. (7.35) i1s a skin-friction law for turbulent flat-plate flow
f 12 ¢\ 12
(—) ~2441n Rea(—] +5.0 (737)
< 2,
It is a complicated law, but we can at least solve for a few values and list them:
Re; | 1ot | 10 | 10° | 107
o | 0.00403 | 0.00315 | 0.00217 | 0.00158
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Following a suggestion of Prandtl, we can forget the complex log friction law (7.37)
and simply fit the numbers in the table to a power-law approximation

er=0.02 Re; "* (7.38)

This we shall use as the left-hand side of Eq. (7.33). For the right-hand side. we need
an estimate for #(x) in terms of &(x). If we use the logarithmic-law profile (7.34), we
shall be up to our hips in logarithmic integrations for the momentum thickness. Instead
we follow another suggestion of Prandtl, who pointed out that the turbulent profiles in
Fig. 7.5 can be approximated by a one-seventh-power law

F AL
(%)mm ~ (-};) (7.39)

With this simple approximation. the momentum thickness (7.28) can easily be evaluated:

E'll.l'? - 1]."? I_i
o L(a) [1 (,3) }d}—?zﬁ (7.40)

substitute into Karman's momentum law and integrate, assuming 6 = 0 at x = 0:

- - &7 I'E'i. u If-' sl
¥ P .: I|' s W — == ——— T |:,
I\L_, .16 !‘:"u.. L 3 Rel/ | b
0027
B gl
0.0135Y 7% 17
T urh = #_ruf
0.031 7 ji
= T{_ﬂl! A |':_, [y | Jr_.'
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o* *‘J 1— (< dy=—238
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Figure 7.6 shows flat-plate drag coefficients for both laminar-and turbulent-flow
conditions. The smooth-wall relations (7.27) and (7.43) are shown, along with the ef-
fect of wall roughness, which is quite strong. The proper roughness parameter here is
xle or Lle, by analogy with the pipe parameter &'d. In the fully rough regime. Cp, is in-
dependent of the Reynolds number, so that the drag varies exactly as U” and is inde-
pendent of p. Reference 2 presents a theory of rough flat-plate flow, and Ref. 1 gives
a curve fit for skin friction and drag in the fully rough regime:

—25
= (2.3? + 1.58 log i) (7.48a)

¢ y—25
Cp ~ (1 89 + 1.62 log é) (7.48b)
[

Equation (7.485b) i1s plotted to the right of the dashed line in Fig. 7.6. The figure also
shows the behavior of the drag coefficient in the transition region 5 X 10° << Re, <
8 % 107, where the laminar drag at the leading edge is an appreciable fraction of the
total drag. Schlichting [1] suggests the following curve fits for these transition drag
curves depending upon the Revnolds number Re,.,,.. where transition begins:

0.031 1440

- — 5
Rel” Re, Regans = 5 X 10 (7.49q)
=) oo 8700
7 — 5 Reyaes = 3% 10° (7.49b)
Re; RE;_

0.014 \
4 | 200
— Fully rough
T Eq. (7.48b) L_300
0.012 \ E-
| ]
.--"/— \
\
\ 500
0.010 d
_.__-/'\
\
e 1000
0.008 Pt -
/ \ 2000
L \
/ ~
0.006 s 5000
by
/\ D 1o
‘\ N_/ - ~ — 2 X "]4
= 5x10*
| - -
Transition --_\_%
Eq.(7.49)
0
10° 10% 107 10# 10°
RCL

Fig. 7.6 Drag coefficient of laminar
and turbulent boundary layers on
smooth and rough flat plates. This
chart is the flat-plate analog of the
Moody diagram of Fig. 6.13.



7.5 Boundary Layers with
Pressure Gradient®
The flat-plate analysis of the previous section should give us a good feeling for the be-
havior of both laminar and turbulent boundary layers, except for one important effect:
flow separation. Prandtl showed that separation like that in Fig. 7.2k is caused by ex-
cessive momentum loss near the wall in a boundary layer tryving to move downstream
against increasing pressure, dp/dx = 0, which is called an adverse pressure gradient.
The opposite case of decreasing pressure, dpldx << 0, is called a favorable gradient,
where flow separation can never occur. In a typical immersed-body flow, e.g., Fig. 7.2h,
the favorable gradient is on the front of the body and the adverse gradient 1s in the rear,
as discussed in detail in Chap. 8.

We can explain flow separation with a geometric argcument about the second deriv-
ative of velocity u at the wall. From the momentum equation (7.195) at the wall, where
u = v =, we obtain

ar a*u dU  dp
e = — = — U -
dy | wan a Ay | wall P dx dx
or _a-:; — L& (7.50)
ay” lwan o dx

for either laminar or turbulent flow. Thus in an adverse gradient the second derivative of
velocity 1s positive at the wall; yet it must be negative at the outer layer (v = &) to merge
smoothly with the mainstream flow U(x). It follows that the second derivative must pass
through zero somewhere in between. at a point of inflection. and any boundary-

layer profile in an adverse gradient must exhibit a charactenistic S shape.
Figure 7.7 illustrates the general case. In a favorable gradient (Fig. 7.7a) the profile
is very rounded, there is no point of inflection, there can be no separation, and lami-
nar profiles of this type are very resistant to a transition to turbulence [1 to 3].

In a zero pressure gradient (Fig. 7.7h), e.g., flat-plate flow, the point of inflection
is at the wall itself. There can be no separation, and the flow will undergo transition
at Re, no greater than about 3 X 10°, as discussed earlier.

In an adverse gradient (Fig. 7.7¢ to ), a point of inflection (PI) occurs in the bound-
ary layer, its distance from the wall increasing with the strength of the adverse gradi-
ent. For a weak gradient (Fig. 7.7¢) the flow does not actually separate, but it is vul-
nerable to transition to turbulence at Re, as low as 10° [1, 2]. At a moderate gradient,
a critical condition (Fig. 7.7d) is reached where the wall shear is exactly zero (du/dy =
0). This is defined as the separation point (t,, = (), because any stronger gradient will
actually cause backflow at the wall (Fig. 7.7¢): the boundary layer thickens greatly,
and the main flow breaks away, or separates, from the wall (Fig. 7.2b).
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v, v
u u
Pl
(a) Favorable (b) Zero

gradient: gradient:
dif dU
2= =0 = =0
dx - dx
dp dp
— =0 — =0
dx dx
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Plinside wall P1 at wall
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— =0

dx

Llf
v .
u
u
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Pl 4
Ty = 0

Backflow

(c) Weak adverse
gradient:

Clipr

dx

dp
E>0

No separation,

Pl in the flow

{d) Critical adverse

gradient:

Zero slope
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Separation

() Excessive adverse

gradient:

Backflow
at the wall:

Separated
flow region

Fig. 7.7 Effect of pressure gradient
on boundary-layer profiles; P1 =
point of inflection.
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Laminar Integral Theory
extend to variable [/(x)

Tw

1 de B dU
==L 2+
o7 T2 g T
where A(x) is the momentum thickness and H(x) = &*(x)/#(x) is the shape factor.

negative dU/dx 15 equivalent to positive dp/dx, that 1s, an adverse gradient.

We can integrate Eq. (7.51) to determine #(x) for a given U(x) if we correlate ¢, and
H with the momentum thickness. This has been done by examining typical velocity
profiles of laminar and turbulent boundary-layer flows for various pressure gradients.
Some examples are given in Fig. 7.9, showing that the shape factor H is a good indi-

3.5 (Separation)

® Points of

inflection
cator of the pressure gradient. The higher the H, the stronger the adverse gradient, and ;ﬂiﬁ)
separation occurs approximately at - o o DI_6 ul_s o
o~ 35 laminar flow (152) z
24 turbulent flow @
1.0
The laminar profiles (Fig. 7.9a) clearly exhibit the S shape and a point of inflection ool Flat plate -
with an adverse gradient. But in the turbulent profiles (Fig. 7.9h) the points of inflec- T oE=f-13
tion are typically buried deep within the thin viscous sublayver, which can hardly be “n
seen on the scale of the figure. 07 o \iab«
0.6 PR
WIS
u SAYEAT
7 05§ A
0.4 4 Separation
0.3 I
Py

e e e T I
1] 01 02 03 04 05 06 07 08 09 10

2l

(h

Fig. 7.9 Velocity profiles with pressure gradient: (a) laminar flow: (b) turbulent flow with adverse gradients.
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For laminar flow, a simple and effective method was developed by Thwaites [11].
who found that Eq. (7.51) can be correlated by a single dimensionless momentum-
thickness variable A, defined as

& dU
A=—— 7.53
v e (7.53)
Using a straight-line fit to his correlation, Thwaites was able to integrate Eq. (7.51) in
closed form. with the result

T a2 ﬁﬁ 0.45p [* 5
6 —HD(U) oy LU dx (7.54)

where f; is the momentum thickness at x = 0 (usually taken to be zero). Separation
(¢ = 0) was found to occur at a particular value of A

Separation: A= —0.09 (7.55)

Finally, Thwaites correlated values of the dimensionless shear stress § = 7,68/ U) with
A. and his graphed result can be curve-fitted as follows:

Tl
pl

S(A) = = (A + 0.09)%°2 (7.56)

This parameter 1s related to the skin friction by the identity

S = lc/Reg (7.57)

As a demonstration of Thwaites” mE;thD-d.. take a flat plate, where U = constant, A =
0. and #y = 0. Equation (7.54) integrates to

2 045
g = 2
0.671
or e (7.58)

This 1s within 1 percent of Blasius™ exact solution, Eq. (7.30).



Chapter 7 (Cont’d)

1.6 Experimental External
Flows
Drag of Immersed Bodies

In low-speed flow past geometrically similar bodies with identical orientation and
relative roughness, the drag coefficient should be a function of the body Reynolds num-

ber
Cp = f(Re) (7.60)

The Reynolds number is based upon the free-stream velocity V and a characteristic
length L of the body, usually the chord or body length parallel to the stream

_VL
V

Re (7.61)

For cylinders, spheres, and disks, the characteristic length is the diameter D.

Characteristic Area

Drag coefficients are defined by using a characteristic area A which may differ de-
pending upon the body shape:
_ drag (7.62)

VA

- I’.;

The factor ; is our traditional tribute to Euler and Bemoulli. The area A is usually one
of three types:

1. Frontal area, the body as seen from the stream: suitable for thick. stubby bodies,
such as spheres, cylinders, cars, missiles, projectiles, and torpedoes.

2. Planform area, the body area as seen from above; suitable for wide. flat bodies
such as wings and hydrofoils.

3. Wetted area, customary for surface ships and barges.

In using drag or other fluid-force data, it is important to note what length and area are
being used to scale the measured coefficients.
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Cp = CIJ,prcss + Cp fric

Friction Drag and Pressure Drag

The relative contribution of friction and pressure drag depends upon the body’s shape,
especially its thickness. Figure 7.12 shows drag data for a streamlined cylinder of very
large depth into the paper. At zero thickness the body 1s a flat plate and exhibits 100
percent friction drag. At thickness equal to the chord length, simulating a circular cylin-
der, the friction drag is only about 3 percent. Friction and pressure drag are about equal
at thickness #/c = 0.25. Note that Cp in Fig. 7.12b looks quite different when based
upon frontal area instead of planform area, planform being the wvsual choice for this
body shape. The two curves in Fig. 7.12b represent exactly the same drag data.

Data scatter
Percentage of

pressure
drag

Friction drag percent
=
I

ia) 0 02 04 0.6 0.8 LO

i ==

Circular cylinder
0.3

Cp based upon frontal area (t#)

nz2 Cp based upon planform area (ch)

Fig. 7.12 Drag of a streamlined
two-dimensional cylinder at Re,. =
10% (@) effect of thickness ratio on
percentage of friction drag; (/) total 0 I I
drag versus thickness when based (b) 0 0.1 0.4 0.6 0.8 LO
upon two different areas. Thickness ratin%
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Figure 7.13 illustrates the dramatic effect of separated flow
"':ixpdmlmn o

S /

' | Broad | ”f}"

wake
\-ﬁu— L. 3/

(a)

Inviscid

\ theory
\ ;CP:I—J»sin?E
\ /
_3.0 I ] I
0= 45° o= 135 180°
g
(c)

* O
Cp=03 -

Separation

O e

| MNarrow

wake

Fig. 7.13 Flow past a circular
cylinder: (a) laminar separation; (&
turbulent separation; (c) theoretical
and actual surface-pressure distri-
butions.

The laminar flow (Fig. 7.14a) separates at about 80°, Cp = 0.5
while the turbulent flow (Fig. 7.14b) separates at 120°, Cp = 0.2.

(3]

Fig. 7.14 Strong differences in lam-
inar and turbulent separation on an
8.5-in bowling ball entering water
at 25 fifs: (a) smooth ball, laminar
boundary layer; (b) same entry, tur-
bulent flow induced by patch of
nose-sand roughness. (U5, Navy
photograph, Orndnance Test Station,
Pasadena Annex.)
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In general, we cannot overstress the importance of body streamlining to reduce
drag at Reynolds numbers above about 100. This is illustrated in Fig. 7.15. The rec-
tangular cylinder (Fig. 7.15a) has rampant separation at all sharp corners and very
high drag. Rounding its nose (Fig. 7.155) reduces drag by about 45 percent, but Cp,
is still high. Streamlining its rear to a sharp trailing edge (Fig. 7.15¢) reduces its drag
another 85 percent to a practical minimum for the given thickness. As a dramatic con-
trast, the circular cylinder (Fig. 7.15d) has one-eighth the thickness and one-three-
hundredth the cross section (c) (Fig. 7.15¢), yet it has the same drag. For high-per-
formance vehicles and other moving bodies, the name of the game i1s drag reduction,
for which intense research continues for both aerodynamic and hydrodynamic appli-
cations [20, 39].

o
T
V— To C
0P
N
o
(a)

The drag of some representative wide-span (nearly two-dimensional) bodies is shown
versus the Reynolds number in Fig. 7.16a. All bodies have high Cp, at very low (creep-
ing flow) Re = 1.0, while they spread apart at high Reynolds numbers according to
their degree of streamlining. All values of Cp, are based on the planform area except
the plate normal to the flow. The birds and the sailplane are. of course, not very two-
dimensional. having only modest span length. Note that birds are not nearly as effi-

cient as modern sailplanes or airfoils [14, 13].

Fig. 7.16 Drag coefficients of
smooth bodies at low Mach num-
bers: (a) two-dimensional bodies;
(b) three-dimensional bodies. Note
the Reynolds-number independence
of blunt bodies at high Re.

o
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( o~
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Fig. 7.15 The importance of
streamlining in reducing drag of a

(b
body (Cp, based on frontal area):
(@) rectangular cylinder: (5)
— ) ) — rounded nose; (c) rounded nose and
JCD =0.15 1'_"‘@_9 \__E_D streamlined sharp trailing edge; (d)
circular cylinder with the same
drag as case (c).
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Table 7.2 gives a few data on drag, based on frontal area, of two-dimensional bod-
ies of various cross section. at Re = 10*. The sharp-edged bodies. which tend to cause
flow separation regardless of the character of the boundary layer, are insensitive to the
Reynolds number. The elliptic cylinders, being smoothly rounded, have the laminar-
to-turbulent transition effect of Figs. 7.13 and 7.14 and are therefore quite sensitive to
whether the boundary layer is laminar or turbulent.

Table 7.2 Drag of Two-
Dimensional Bodies at Re = 10

Cp based Cp based Cp based
on frontal on frontal on frontal
Shape area Shape area Shape area
Square cylinder: Half-cylinder: Plate:
—_— 21 - (I 1.2 —_— 20
Thin plate
—_— 1.6 E— D 1.7 normal to
a wall:
Half wbe: Equilateral triangle: — 14
— ( 12 — 1.6 a
Hexagon

\_/

—;»|> 2.0

Shape

Cp based on frontal area

Rounded nose section:

—_—

vi: | 053

| 10

| 20 | 40 | 60

e

Flat nose section

Elliptical cylinder:

Cp: | L16 | 050 | 070 | 068 | 064

pi: Joa | oosa ) o7 |
Co 110 | 23 1 27 1

.aminar Turbulent

1.2 03
0.6 02
035 0.15

Bl —— = = 0.25 0.1

| 20 | 25 | 30 | 60
18 | 12 [ 13 | 09
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Some drag coefficients of three-dimensional bodies are listed 1n Table 7.3 and Fig.
7.16b. Again we can conclude that sharp edges always cause flow separation and high
drag which is insensitive to the Reynolds number. Rounded bodies like the ellipsoid
have drag which depends upon the point of separation, so that both the Reynolds num-
ber and the character of the boundary layer are important. Body length will generally de-
crease pressure drag by making the body relatively more slender, but sooner or later the
friction drag will catch up. For the flat-faced cylinder in Table 7.3, pressure drag decreases

with [/d but friction increases, so that minimum drag occurs at about L/id = 2.
Table 7.3 Drag of Three-Dimensional Bodies at Re = 10*

Cp based on
Body frontal area Body Cp based on frontal area

Cube: Cone:

107 . . T - . g .
D ﬂ' Cp: | 030 § 040 ) 055 | 0.65 | 080 | 105§ LIS

N 081 Short cylinder,
laminar flow:
o1 |2 |3 |5 Jw Juo J4 |-

L Cpy I D.64| 0.68 I 072 I 0.74 I 0.82 I 0.91 I 0.98 I 1.20
Cup: b
—_— ) L4 Porous parabolic
dish [23]:

Porosity: | 0 01 02 J03 J04 §05
0.4 —_— —-—Cp [ 142 133 120 105 ] 095 0.82
—— y — Cpr | 0,05 | 092 | 0.90 | 0.86 | 0.83 | 0.80

Average person: “%

Disk: =
— 117 - N — oa=om cpa=12e2
|
W
:’La;nchutc ity) Pine and spruce
w porosity): .
porosty 12 trees [24]: vois |0 o | s | 40
- = Cp f12z02 JLoz02 Jo7£02 (0502
Cp based on Cp based on
Body Ratio frontal area Body Ratio frontal area
Rectangular plate: Flat-faced cylinder:
— || bh1 118 E []:) Lid 05 115
b 5 12 1 0.90
10 13 2 0.85
I:lff 20 L5 4 0.87
£ 20 8 0.99
L. Laminar Turbulent
Ellipsoid: o e —
Lid 075 0.5 02
d 1 047 0.2
2 0.27 0.13
| [ 4 0.25 0.1
8 0.2 0.08
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Aerodynamic Forces on Road
Vehicles

Fig. 7.17 Aerodynamics of automo-
biles: (a) the historical trend for
drag coefficients [From Ref. 211;

Fig. 7.18 Drag reduction of a trac-
tor-trailer truck: (a) horsepower re-
quired to overcome resistance: ()
deflector added to cab reduces air
drag by 20 percent. {Uniroval Inc.)
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Drag of Surface Ships

The drag data above, such as Tables 7.2 and 7.3, are for bodies “fully immersed” in a
free stream, 1.e., with no free surface. If, however, the body moves at or near a free lig-
vid surface, wave-making drag becomes important and is dependent upon both the
Reynolds number and the Froude number. To move through a water surface, a ship
must create waves on both sides. This implies putting energy into the water surface
and requires a finite drag force to keep the ship moving, even in a frictionless fluid.
The total drag of a ship can then be approximated as the sum of friction drag and wave-
making drag:

F = Fpic + Faave or Cp = Cpsric T Cowave

The friction drag can be estimated by the (turbulent) flat-plate formula, Eq. (7.45),
based on the below-water or wetted area of the ship.

Reference 27 is an interesting review of both theory and experiment for wake-
making surface ship drag. Generally speaking, the bow of the ship creates a wave sys-
tem whose wavelength is related to the ship speed but not necessarily to the ship length.
If the stern of the ship is a wave trough, the ship 1s essentially climbing uphill and has
high wave drag. If the stern is a wave crest, the ship is nearly level and has lower drag.
The criterion for these two conditions results in certain approximate Froude numbers
[27]:

v 0.53
Vel VN

high drag if N=1,3.5.7,...;
low drag iff N =12, 4.6, 8, ...

Fr =

(7.65)

where V is the ship’s speed, L is the ship’s length along the centerline, and N is the
number of half-lengths, from bow to stern, of the drag-making wave system. The wave
drag will increase with the Froude number and oscillate between lower drag (Fr =
0.38, 0.27, 0.22, . . .) and higher drag (Fr == 0.53, 0.31, 0.24, . . .) with negligible vari-
ation for Fr << 0.2, Thus it is best to design a ship to cruise at N = 2, 4, 6, 8. Shaping
the bow and stern can further reduce wave-making drag.

Figure 7.19 shows the data of Inm [27] for a model ship. The main hull, curve A,
shows peaks and valleys in wave drag at the appropriate Froude numbers = 0.2. In-
troduction of a bulb protrusion on the bow, curve B, greatly reduces the drag. Adding
a second bulb to the stern, curve C, is still better, and Inui recommends that the design
speed of this two-bulb ship be at N = 4, Fr = 0.27, which is a nearly “waveless” con-
dition. In this figure Cp, ... 1s defined as 2F el (PV7L7) instead of using the wetted
area.

The solid curves in Fig. 7.19 are based on potential-flow theory for the below-
water hull shape. Chapter 8 is an introduction to potential-flow theory. Modern digital
computers can be programmed for numerical CFD solutions of potential flow over the
hulls of ships, submarines, yachts, and sailboats, including boundary-layer effects
driven by the potential flow [28]. Thus theoretical prediction of flow past surface ships
1s now at a fairly high level. See also Ref. 15.

Chapter 7 (Cont’d)

= A Main hull (without bulh)
* B With bow-bulb
A C With bow and stern-bulbs

0.002 —

Potential-flow theory

Cﬂ. wave

0.001 —

Design
speed

Fig. 7.19 Wave-making drag on a
ship model. (Affer Inui [27].) Note:
The drag coefficient is defined as
Cpw = 2FNpV*L).

(.60
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Body Drag at High Mach
Numbers

All the data presented above are for nearly incompressible flows, with Mach numbers
assumed less than about 0.5. Beyond this value compressibility can be very important,
with Cp, = fen(Re, Ma). As the stream Mach number increases, at some subsonic value
My = 1 which depends upon the body’s bluntness and thickness, the local velocity at
some point near the body surface will become sonic. If Ma increases beyond Ma_g,.
shock waves form, intensify, and spread, raising surface pressures near the front of the
body and therefore increasing the pressure drag. The effect can be dramatic with Cp
increasing tenfold, and 70 years ago this sharp increase was called the sonic barrier,
implying that it could not be surmounted. Of course, it can be—the rise in Cp, is fi-
nite, as supersonic bullets have proved for centuries.

Figure 7.20 shows the effect of the Mach number on the drag coefficient of various
body shapes tested in air.” We see that compressibility affects blunt bodies earlier, with
Ma.; equal to 0.4 for cylinders, 0.6 for spheres, and 0.7 for airfoils and pointed pro-
jectiles. Also the Reynolds number (laminar versus turbulent boundary-laver flow) has
a large effect below Ma_y, for spheres and cylinders but becomes unimportant above
Ma == 1. In contrast, the effect of the Reynolds number 1s small for airfoils and pro-
jectiles and is not shown in Fig. 7.20. A general statement might divide Reynolds- and
Mach-number effects as follows:

Ma = 04: Reynolds number important. Mach number unimportant
04 <Ma<=1: both Reynolds and Mach numbers important
Ma = 1.0: Reynolds number unimportant, Mach number important

At supersonic speeds, a broad bow shock wave forms in front of the body (see Figs.
9.10b and 9.19), and the drag is mainly due to high shock-induced pressures on the
front. Making the bow a sharp point can sharply reduce the drag (Fig. 9.28) but does
not eliminate the bow shock. Chapter 9 gives a brief treatment of compressibility.
References 30 and 31 are more advanced textbooks devoted entirely to compressible
flow.

Cylinder in cross flow:
Laminar, Re = 1 E5
Turbulent, Re = 1 E6

Sphere
Laminar, Re = 1 E5
Turbulent, Re = 1 E6

Pointed body
of revolution

1.0 2.0 30
Mach number

Fig. 7.20 Effect of the Mach num-
ber on the drag of various body
shapes. (Data from Refs. 23 and
29.)
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Forces on Lifting Bodies

Lifting bodies (airfoils, hydrofoils, or vanes) are intended to provide a large force nor-
mal to the free stream and as little drag as possible. Conventional design practice has
evolved a shape not unlike a bird’s wing, i.e., relatively thin (#/c = 0/18) with a rounded
leading edge and a sharp trailing edge. A typical shape is sketched in Fig. 7.22.

For our purposes we consider the body to be symmetric, as in Fig. 7.11, with the

free-stream velocity in the vertical plane. If the chord line between the leading and
trailing edge is not a line of symmetry, the airfoil is said to be cambered. The camber
line 1s the line midway between the upper and lower surfaces of the vane.

The angle between the free stream and the chord line is called the angle of attack
c. The lift L and the drag D vary with this angle. The dimensionless forces are defined
with respect to the planform area A, = be:

. I
Cp=—3
pVAL
. D
Cp=—"3
pVAL

For low-speed flow with a given roughness ratio, C; and Cp, should vary with a and
the chord Reynolds number

Ci = fia, Re.) or

Lift coefficient: (7.66a)

Drag coefhicient: (7.66h)

Cp = fla, Re.)

where Re. = Ve/v. The Reynolds numbers are commonly in the turbulent-boundary-
layer range and have a modest effect.

The rounded leading edge prevents flow separation there, but the sharp trailing edge

causes a separation which generates the lift. Figure 7.23 shows what happens when a
flow starts up past a lifting vane or an airfoil.

edge induces separation, and a oped; (d) starting vortex now shed
starting vortex forms: slight lift; (c) far behind. trailing edge now very
starting vortex is shed, and stream-  smooth: lift fully developed.

lines flow smoothly from trailing

edge: lift is now 80 percent devel-

Fig. 7.23 Transient stages in the
development of lift: (a) start-up:
rear stagnation point on the upper
surface: no lift; () sharp trailing

Planform
area = b

Fig. 7.22 Definition sketch for a
lifting vane.




At a low angle of attack, the rear surfaces have an adverse pressure gradient but not
enough to cause significant boundary-layver separation. The flow pattern is smooth. as
in Fig. 7.23d, and drag is small and lift excellent. As the angle of attack is increased,
the upper-surface adverse gradient becomes stronger, and generally a separation bub-

ble begins to creep forward on the upper surface.® At a certain angle a = 15 to 20°,
the flow is separated completely from the upper surface, as in Fig. 7.24. The airfoil 1s
said to be stalled: Lift drops off markedly. drag increases markedly, and the foil is no
longer flyable.

Figure 7.25 shows the lift and drag on a symmetric airfoil denoted as the NACA
0009 foil, the last digit indicating the thickness of 9 percent. With no flap extended.
this airfoil, as expected, has zero lift at zero angle of attack. Up to about 12° the lift
coefficient increases linearly with a slope of 0.1 per degree, or 6.0 per radian. This is
in agreement with the theory outlined in Chap. 8:

20

ClLiheory = 2 ﬁin(ﬂ +=

(7.67)

where h/c 1s the maximum camber expressed as a fraction of the chord. The NACA
0009 has zero camber; hence C; = 2 sin o == 0.11. where « is in degrees. This is
excellent agreement.

Cr
Re.= 6 10°
e c
i J/\ D
16 / e 0.04
| Split
flap It
124 AN bo3 | With flap
at 607
With flap / / { Re,=9x 108 !
= at 607 / / \ 7
08 L6 105 0.02 / Re, =3 x 10°
/ ) / 13 % 108 7 |
|/
. N . Nofla -7 6 % 10°
Fig. 7.25 Lift and drag of a sym- robap -—r A 9% 10
. P . 0.4 I
metric NACA 0009 airfoil of infi- / 0.1 %//’/
. . . . Pt
nite span. including effect of a S=—cadl
- : ; No flz

split-flap deflection. Note that / Loy
roughness can increase Cp from -2 -8 -4 0 4 B 12 16 -8 -4 0 4 8 12 16
L0 to 300 percent. a. deg a. deg

Fig. 7.24 At high angle of attack,
smoke-flow visualization shows
stalled flow on the upper surface of
a lifting vane. {From Ref. 19, Illus-
trated Experiments in Fluid Me-
chanics (The NCFMF Book of Film
Notes), National Committee for
Fluid Mechanics Films, Education
Development Center, Inc., copy-
right 1972.]
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Review of Velocity-Potential

Concepts
V=V or u=3—f v = ?}% w= if (8.1)
The continuity equation (4.73), ¥V - V = (), reduces to Laplace’s equation for ¢
vg=22,9¢, 09 _, (8.2)
dx” adv” dz”
and the momentum equation (4.74) reduces to Bernoulli’s equation:
@ + Z + :l V2 + gz = const where V= |V (8.3)
ot o i
Typical boundary conditions are known free-stream conditions
: do d¢ do
Outer boundaries: Known i’ oy 0z (8.4)
and no velocity normal to the boundary at the body surface:
Solid surfaces: i—i} =0 where n 1s perpendicular to body (8.5)

Unlike the no-slip condition in viscous flow, here there is no condition on the tangen-
tial surface velocity V, = ddWds. where s is the coordinate along the surface. This ve-
locity 1s determined as part of the solution to the problem.

Occasionally the problem involves a free surface, for which the boundary pressure
is known and equal to p,, usually a constant. The Bernoulli equation (8.3) then sup-
plies a relation at the surface between V and the elevation z of the surface. For steady
flow, e.g.,

Free surface: V: = |T-:1>|2 = const — 2gZsurr (8.6)

Freestream

—_—

Inviscid external flow —=  Separation

— -

— )
— {1l

— Boundary layer —= -

/\

— .ﬁ_.__l§0_undary layer —  Fully

—  Viscous
E—

Inviscid internal core —= ———

-~ Boundary layer

“——————___ Boundary layer —= ~ _
=

Inviscid external flow — -]Scpaxalion
Fig. 8.1 Patching viscous- and in-

viscid-flow regions. Potential the-

ory in this chapter does not apply

to the boundary-layer regions
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Review of Stream Function
Concepts
Recall from Sec. 4.7 that if a flow is described by only two coordinates, the stream

function i also exists as an alternate approach. For plane incompressible flow in xy
coordinates, the correct form is

_ay __o¥
u= oy v= o (8.7)

The condition of irrotationality reduces to Laplace’s equation for o also:

vy ==Y _9u_d [ I\ 0 (of
o dx dy dx ( Eix) dv | dy. (@)
or r.]._t'ii e {f_t'iﬂ =0 (8.5 s @
X v
¥

The boundary conditions again are known velocity in the stream and no flow through &,
any solid surface: ¥

r r J—
Free stream: Known g—f, ;j (8.9q) B !
Solid surface: gy = const (8.95)
Equation (8.9bh) is particularly interesting because any line of constant ¢ in a flow
can therefore be interpreted as a body shape and may lead to interesting applica- (b)

tions. . . .
. . : Fig. 8.2 Streamlines and potential
For the applications in this chapter, we may compute either ¢ or i or both, and the l'm%s are orthogonal and I'll:lla}f re-
solution will be an rjrrhag.j:maf flow net as in Fig. 8.2. Once found, either set of lines verse rales if results are useful: (a)
may be considered the ¢ lines, and the other set will be the i lines. Both sets of lines typical inviscid-flow pattern; (b)

are laplacian and could be useful. same as (a) with roles reversed.



Chapter 8 (Cont’d)

Many solutions in this chapter are conveniently expressed in polar coordinates (r. #).

Both the velocity components and the differential relations for ¢ and il are then changed,
as follows:

Plane Polar Coordinates

b _1aw _13b_ 3
Toor rodf " afl dr (8.10)
Laplace’s equation takes the form
10 ( 9\, 10 _
rax-(‘"ar)+ﬁ g " @1

Exactly the same equation holds for the polar-coordinate form of Wi(r. #).

8.2 Elementary Plane-Flow

Solutions
Uniform stream 1l/: = Uy ¢=Ux {8.12a)
Line source or sink: = m# dh=mlnr (8.12h)
Line vortex: fi=—Klnr ¢ =K# (8.12¢)

The source “strength™ m and the vortex “strength™ K have the same dimensions, namely,
velocity times length. or {LY/T}.
If the uniform stream is written in plane polar coordinates. it becomes

Uniform stream il/: = Ursin # ¢ = Urcos # (8.13)

This makes it easier to superimpose, say, a stream and a source or vortex by using the

same coordinates. If the uniform stream is moving at angle & with respect to the x-
axis,

= Uy cos & — x sin «@) ¢ = Ulxcos a + v sin a) (8.14)
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The line-vortex flow is irrotational everywhere except at the origin, where the vortic-
ity ¥V x V is infinite. This means that a certain line integral called the fluid circulation
I does not vamish when taken around a vortex center.

With reference to Fig. 8.3, the circulation is defined as the counterclockwise line
integral, around a closed curve C, of arc length ds times the velocity component tan-
gent to the curve

Circulation

[=§ Vcosads = [ Veds=[ wdx+vdy+wdd) (8.15)
[ [ [

From the definition of ¢, V - ds = Vb - ds = d¢b for an irrotational flow: hence nor-
mally I" in an irrotational flow would equal the final value of ¢ minus the initial value
of ¢. Since we start and end at the same point, we compute I = 0, but not for vortex
flow: With ¢ = K# from Eq. (8.12¢) there is a change in ¢ of amount 27K as we make
one complete circle:

Path enclosing a vortex: I'=2aK

In general, I" denotes the net algebraic strength of all the vortex filaments contained
within the closed curve. In the next section we shall see that a region of finite circu-
lation within a flowing stream will be subjected to a lift force proportional to both [J
and T

It 1s easy to show. by using Eq. (8.15). that a source or sink creates no circulation.
If there are no vortices present, the circulation will be zero for any path enclosing any
number of sources and sinks.

Fig. 8.3 Definition of the fluid cir-
culation T
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8.3 Superposition of Plane-
Flow Solutions

Rankine half-body:

= U_rsin # + mf d=U_rcos+mlinr

The Rankine Oval

) _ 2ay .
= Uy — m tan ! # = U, rsin #+ m(#, — #)
rty —a

The Kelvin Owal

| x4 (v + a)?
= [ po—_—— = =
= Ux 2 Kln x4y —a)r

Flow Past a Circular Cylinder
with Circolation

[ A0 f.'l. ¥ | K In -

Body name

Elemental combination

Flow Patterns

Rankine Half Body Uniform stream+source .

= -.1:_ r: ==
Rankine Oval Umiform stream+sourcetsmk it
Kelvin Oval Uniform stream+vortex point

i |

Circular Cylinder Uniform stream+doublet
without circulation
Circular Cylinder with Uniform
circulation streamtdoublet+vortex




¥ 1
8.6 Images

Spherical and Curvilinear
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Boundaries:

The results for plane boundaries are obtained from comnsideration of symmetry. For
spherical and circular boundaries. unage systems can be deternuned from the Sphere &
Circle Theorems, respectively. For example:

Flow field

Image System

Source of strength M at ¢ outside sphere of
radius a, c=a

17 !

Sources of strength m% at /r and line
: /e

sink of strength 7% # extending from center

of sphere to a%

Dipole of strength gy at ] outside sphere of
radius a, {=a

3/ 2
dipole of strength —& ﬁ:’jf at -2 /;

Source of strength m at b outside circle of
radius a, ba

:z:and. sink of same
strength at the center of the circle

equal source at @

Tig. 8.17 Constraining walls can be
created by image flows: (a) source
near a wall with identical image
source; (b) vortex near a wall with
image vortex of opposite sense; (c)
airfoil in ground effect with image
airfoil of opposite circulation; (d)
source between two walls requiring
an infinite row of images.

La)

(c)

IE { . BN j "|
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