Chapter 5 (Cont.)

Modeling Flow conditions for a model test are completely similar if all relevant dimensionless
parameters have the same comesponding values for the model and the prototype.

Geometric Similarity A model and prototype are geometrically similar if and only if all body dimensions
. in all three coordinates have the same linear-scale ratio.
All angles are preserved in geometric similarity. All flow directions are preserved
The orientations of model and prototype with respect to the surroundings must be
identical.

Kinematic Similarity The motions of two systems are klnc.nm]uull}' similar if homologous particles lie at
homologous points at homologous times.

Dynamic similarity exists when the model and the prototype have the same length-

Dynamic Similarity scale ratio, time-scale ratio, and force-scale (or mass-scale) ratio.
equivalence of Reynolds and Froude numbers can be achieved only by dra- Range Range
matic changes in fluid properties, whereas in fact most model testing is simply done of Be,, of Re,,
with water or air, the cheapest fluids available. b Power-law

- ""H’cxtrapolation

-‘H"""—-, Uncertainty

log Cp Model - _
data: ~- i In prototy pe
o o" data estimate
Fig. 5.8 Reynolds-number extrapo- o
lation, or scaling. of hydraulic data i
with equal Froude numbers.
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Chapter 5 (Cont.)

Dimensionless Groups in

Fluid Mechanics

Qualitative ratio
Parameter Definition of effects Importance
Reynolds number Re = UL he—nl_a Always
Viscosity
Mach number Ma = v % Compressible flow
a ound spe;
2 .
Froude number Fr = % éne—rtllta Free-surface flow
B ravity
Weber number We = pUL Inertia - Free-surface flow
Y Surface tension
Cavitation number Ca= p_—? m Cavitation
(Euler number) ot Inertia
Prandtl number Pr= % w Heat convection
‘onduction
al _
Eckert number = Kinetic encrgy Dissipation
eplo Enthalpy
[
Specific-heat ratio k=" __Enthalpy Compressible flow
Cu Internal energy
Strouhal number St= % %IEIL; Oscillating flow
ean spe
. W 53
Roughness ratio E %gt:‘;“ Turbulent, rough walls
ody len
32
Grashof number Gr = BA?E? L ]3::;;::: Natural convection

Temperature ratio

Pressure coefficient

Lift coefficient

Drag coefficient

T,
T
_ PP
G 1pl?
L
Co=1-7
pUA
D

Wall temperature

Stream temperature

Static pressure
Dynamic pressure

Lift force
Dynamic force

Drag force
Dynamic force

Heat transfer

Aerodynamics, hydrodynamics

Aerodynamics, hydrodynamics

Aerodynamics, hydrodynamics




Chapter 6
Reynolds-Number Regimes [ _SMEE" | l ‘:_ IWJ‘;;:%

-:I.isrur’l:laflccs Intermitient Y —
damp quickly bursts of
Fig. 6.1 The three regimes of vis- turbulence
cous flow: {a) laminar flow at low
Re: (b) transition at intermediate — — — -}
Re; () torbulent flow at high Re. la} (k) ()

0<<Re-="1: highly viscous laminar “creeping” motion

| =<Re <2 100: laminar, strong Reynolds-number dependence k
100 < Re < 10%:  laminar, boundary-layer theory useful
107 < Re <= 10* transition to turbulence
10* < Re < 10° trbulent, moderate Reynolds-number dependence (b g
10° <Re< = turbulent, slight Reynolds-number dependence

()

Fig. 6.3 Formation of a turbulent
puff in pipe Aow: (@) and (b) near  (d) 7
the entrance; () somewhat down- :
stream; () far downstream. | From
Refl 43, courtesy of £ R Bandy-
opadhyay. )
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Fig. 6.5 Reynolds® sketches of
pipe-flow transition: (a) low-speed,
laminar flow; (&) high-speed, turbu-
lent flow; () spark photograph of
condition (k). {From Ref. 4.
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Chapter 6

Dimensional analysis shows that the Reynolds number is the only parameter af-
fecting entrance length. If

L=fdV.pp V=42
L. ‘pVd )
th —= = = p(R 6.4
en 4 g( P giRe) i(6.4)
For laminar flow [2, 3], the accepted correlation is
% = (.06 Re laminar (6.5)

The maximum laminar entrance length, at Re, ; = 2300, is L. = 1384, which is the
longest development length possible.

In turbulent flow the boundary layers grow faster, and L, is relatively shorter, ac-
cording to the approximation for smooth walls

% =44 Rel®  turbulent (6.6)
Rey | 4000 | 10 | ¥ | e | 1 | 10
Lid | 18 | 20 B | 4 | & | o3

Fig. 6.6 Developing velocity pro-
files and pressure changes in the
entrance of a duct flow.
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Reynolds’ Time-Averaging I T
Concept U= ) ud
P o
Fig. 6.7 Definition of mean and
fluctuating turbulent variables:
(@) velocity; (b) pressure.
dV Ixr
Momentum: P —Vp + pg + pVV
P 1—r = —r—l'rl— + pg; + —1 |: ,tcf—r - pF-:
N ' B (6.14)
a & du — | d | du —
+— [ Ho U + e —puw |

. —pu'v', and —pu'w' are called rurbulent stresses

The three correlation terms —pu'?

o Fortunately, in duct and
boundary-layer flow, the stress —pu't’ associated with direction v normal to the wall
is dominant, and we can approximate with excellent accuracy a simpler streamwise
momentum equation

du ip aT -
— = —— + + — 6.15
[ d P PEx ay (6.15)
i1 ——
where T= p.a— —pu'y = Tt T (6.16)
1.‘I

r
1 P=F+p
Wl
v
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Chater
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layer
Owerlap layer
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L) (&)

Fig. 6.8 Typical velocity and shear
distributions in turbulent flow near
a wall: (@) shear; (&) velocity.



Chapter

The Logarithmic-Overlap Law We have seen in Fig. 6.8 that there are three regions in turbulent flow near a wall:

I. Wall layer: Viscous shear dominates.
2. Outer layer: Turbulent shear dominates.
3. Overlap layer: Both types of shear are important.

For the wall layer, Prandt]l deduced in 1930 that & must be independent of the shear- 30
layer thickness Dhuter an e |._f-i:
= fip. 7. p. ¥ 6.17 Strong increasing pressue ————— 7 . -~
w = flpe, 7. p. ¥) 6.17) Flat plaic flow y
By dimensional analysis, this is equivalent to 25 — Pipe flow

Strong decreasing pressure

o [ W12
u' =L*=F(\” ) :.-“=(EJ (6.18)
u v P

Equation (6.18) is called the law of the u]'-::.f!', and the quantity u¥ is termed the friction M — lfer ut =yt
velocity because it has dimensions {LT "}, although it is not actually a flow velocity. VISCOUS
Subsequently, Kdarmdn in 1933 deduced that u in the outer layer is independent of sublayer,
molecular viscosity, but its deviation from the stream velocity UV must depend on the Eq. [6221—'-—-.!'
layer thickness & and the other properties S

(U = w)ouer = 208, T p. ¥) (6.19) .

Again, by dimensional analysis we rewrite this as

U—u (¥
— =G| 6.20 =
u* (SJ ( ) 10
where u* has the same meaning as in Eg. (6.18). Equation (6.20) is called the Experimental data
velocity-defect law for the outer layer.
Both the wall law (6.18) and the defect law (6.20) are found to be accurate for a 5 —
wide variety of experimental turbulent duct and boundary-layer flows [1 to 3]. They
are different in form, yet they must overlap smoothly in the intermediate layer. In 1937
C. B. Millikan showed that this can be true only if the overlap-layer velocity varies
logarithmically with y:
1 10 10? 10* 104

yu®
In—+B overlap layer (6.21) +_ i
».Lha

u 1
u® K ¥ Y=

Ower the full range of turbulent smooth wall flows, the dimensionless constants k and

B are found to have the approximate values x = 0.41 and B = 5.0. Equation (6.21) is Fig. 6.9 Experimental verification

called the logarithmic-overlap layer. of the inner-, outer-, and overlap-
Thus by dimensional reasoning and physical insight we infer that a plot of & versus layer laws relating velocity profiles

In y in a turbulent-shear layer will show a curved wall region, a curved outer region, in turbulent wall flow.

and a straight-line logarithmic overlap. Figure 6.9 shows that this is exactly the case.

The four outer-law profiles shown all merge smoothly with the logarithmic-overlap law

but have different magnitudes because they vary in external pressure gradient. The wall

law is unigue and follows the linear viscous relation

_—
wr=L =t oy (6.22)

u® v -
from the wall to about v* = 5, thereafter curving over to merge with the logarithmic

law at about y*© = 30.



Chapter 6

Flow in a Circular Pipe

The continuity relation, Eq. (3.23), reduces to

&y = (4 = const

or (6.23)

since the pipe is of constant area. The steady-flow energy equation (3.71) reduces to

I - e I 2
% tyaViten = % T 5aaVa gz + ghe (6.24)
v ) ) ) e
pg) \" P8 . Pg pg

Finally apply the momentum relation (3.40) to the control volume in Fig. 6.10, ac-
counting for applied forces due to pressure, gravity, and shear

Ap wh* + pg(wRY) AL sin ¢ — 7,2wR) AL =m{Va — V) =0  (6.26)
This equation relates fip to the wall shear stress
a;+:"‘1‘1=.15r= 2r. AL (6.27)
pg pg R

where we have substituted Az = AL sin ¢ from Fig. 6.10.

So far we have not assumed either laminar or turbulent flow. If we can correlate T,
with flow conditions, we have solved the problem of head loss in pipe flow. Func-
tionally, we can assume that

Tw = F{pﬁ .Ff ““ df E] {6'28}
where € is the wall-roughness height. Then dimensional analysis tells us that
27, i £
= =f=FRes,— 6.29
oV f F( q .:;!'J (6.29)

L)Pi=P2+Ap

. Br=gsing
H“.

Fig. 6.10 Control volume of steady,
fully developed flow between two
sections in an inclined pipe.

Combining Eqs. (6.27) and (6.29), we obtain the desired expression for finding pipe-
head loss

hy=f—— (6.30)

This is the Darcy-Weisbach equation, valid for duct flows of any cross section and for
laminar and turbulent flow. It was proposed by Julius Weisbach. a German professor
who in 1850 published the first modemn textbook on hydrodynamics.



Equations of Motion

Chapter 6

For either laminar or turbulent flow, the continuity equation in cylindrical coordinates
is given by (App. I}

1 d l ol

——(mw)+—— +—=0 6.31
roar (o) rodf (to) dx ( )
We assume that there is no swirl or circumferential variation, vs = a/df = 0, and fully
developed flow: u = u(r) only. Then Eq. (6.31) reduces to

I 4
—— () =10
rodr
or ru,. = const (6.32)

But at the wall, r = R, v. = 0 (no slip): therefore (6.32) implies that v, = 0 every-
where. Thus in fully developed flow there is only one velocity component, o = u(r).
The momentum differential equation in cylindrical coordinates now reduces to

du dp 1 a
—=—""+pg.+—— 6.33
P dx dx P8 r Hrwﬂ ( )

where 7 can represent either laminar or turbulent shear. But the left-hand side vanishes
because u = wir) only. Rearrange, noting from Fig. 6.10 that g, = g sin ¢

I d d : d

—— =—p— =—1Ip + pgz 6.34

oy UM = 4o (p — pgxsin ) = — (p + pgz) (6.34)
Since the lefi-hand side varies only with r and the right-hand side varies only with x,
it follows that both sides must be equal to the same constant.” Therefore we can inte-
grate Eq. (6.34) to find the shear distribution across the pipe. utilizing the fact that
T=0atr=10

r i (p + pgz) = (const)(r) (6.35)

b | —

T =

Thus the shear varies linearly from the centerline to the wall, for either laminar or tur-
bulent flow. This is also shown in Fig. 6.10. At r = R, we have the wall shear
1 + pg Az
w =R = 6.36
™73 AL (6.36)
which is identical with our momentum relation (6.27). We can now complete our study
of pipe flow by applying either laminar or turbulent assumptions to fill out Eq. (6.35).



Laminar-Flow Solution

Chapter 6

Note in Eq. (6.33) that the HGL slope d(p + pgzWdx is negative because both pres-
sure and height drop with x. For laminar flow, 7 =p dw/dr, which we substitute in
Eq. (6.35)

du _ 1 d
W_Lik k=Z(p+pe: 6.37
Har 2" P P8 6.37)

Integrate once

1 K
u=—r—+0¢ (6.38)
4 p

The constant C, is evaluated from the no-slip condition at the wall: u =0 at r = R

o-1mf. ¢ (6.39)
4 m
or O = —ARIK.-’;.L_ Introduce into Eq. (6.38) to obtain the exact solution for laminar
fully developed pipe flow

1 d 2 2 \
w=—\|——(p+ pg) (R~ —r) (6.40)

Ap dx

The laminar-flow profile is thus a paraboloid falling to zero at the wall and reaching
a maximum at the axis
= RE

u, [—ifp + pg:}] (6.41)

dx
It resembles the sketch of u(r) given in Fig. 6.10.

The laminar distribution (6.40) is called Hagen-Poisenille flow to commemorate the
experimental work of G. Hagen in 1839 and 1. L. Poiseuille in 1940, both of whom
established the pressure-drop law, Eq. (6.1). The first theoretical derivation of Eq. (6.40)
was given independently by E. Hagenbach and by F. Neumann around 1839,

Other pipe-flow results follow immediately from Eq. (6.40). The volume flow is

R R o
Q= J udd = J :.-m“(l - _,,}Z'ITF' dr
o o \ R

1 . _ wR* d
= —] R =—| — + pez 6.42
S a1 » [ AR ]} (6.42)

Thus the average velocity in laminar flow is one-half the maximum velocity

v=2-2 1, . (6.43)
A aR 2

For a horizontal tube (Az = 0), Eq. (6.42) is of the form predicted by Hagen’s exper-
iment, Eq. (6.1):

@=§%? (6.44)
Wi

The wall shear is computed from the wall velocity gradient

du TR

1, d
= = =—R + pgz 6.45
T |“' dr |r—r R 2 ‘E’uﬂ Pg3) (6.43)
This gives an exact theory for laminar Darcy friction factor
f= 87, _ B(BuVid) _ 64p
pV? pV: pVd
64

=— 6.46
ar Sfiam Re, [ )

This is plotted later in the Moody chart (Fig. 6.13). The fact that f drops off with in-
creasing Rey should not mislead us into thinking that shear decreases with velocity:
Eq. (6.45) clearly shows that 7, is proportional to iy, 1t is interesting to note that 7,
is independent of density because the fluid acceleration is zero.
The laminar head loss follows from Eq. (6.30)
_ 32plV 128plQ

64 L V2 o
— = — 647
pvd d 2g pgd” r.'p:ga."’

hram =

We see that laminar head loss is proportional to V.
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Turbulent-Flow Solution For turbulent pipe flow we need not solve a differential equation but instead proceed
with the logarithmic law, as in Example 6.3. Assume that Eq. (6.2]) correlates the lo-
cal mean velocity u(r) all the way across the pipe

wr 1 (R - nu*
u* K 4

+ B (6.48)

where we have replaced v by B — r. Compute the average velocity from this profile

Q [R — ru* |
V= A aR L |: v N E:|21rrdr Parabolic \Il'l
curve
2 * 3
= iu*(; In B 4 0p - '—) (6.49)
2k ¥ K
Introducing & = 0.41 and B = 5.0, we obtain, numerically, Il,k/.I i _,"I
Yoo BTy g5 (6.50) '
u* v La)
This looks only marginally interesting until we realize that V/u* is directly related to 7 ‘\I
the Darcy friction factor |
V LVG)IE (8 }IE
- _ == 6.51
() =7 @3
Moreover, the argument of the logarithm in (6.50) is equivalent to I\jl /,'
* Wd 12
v v Vo2 W8 b)

Introducing (6.52) and (6.51) into Eq. (6.50), changing to a base-10 logarithm, and re-
arranging, we obtain

Fig. 6.11 Comparison of laminar
and turbulent pipe-flow velocity
—iz = 1.99 log (Re, ') — 1.02 (6.53) profiles for the same volume flow:

In other words, by simply computing the mean velocity from the logarithmic-law cor- (@) laminar flow; (5) trbulent flow.

relation, we obtain a relation between the friction factor and Reynolds number for tur-
bulent pipe flow. Prandtl derived Eq. (6.53) in 1935 and then adjusted the constants
slightly to fit friction data better

G = 2.0 log (Rey f

- 08 (6.54)

This is the accepted formula for a smooth-walled pipe. Some numerical values may be
listed as follows:
Rey | 4000 | 10 | 10 | 10% | 107 | 10

f | oose | oo | ooms | oouse | oom | oo

Thus fdrops by only a factor of 5 over a 10,000-fold increase in Reynolds number. Equa-
tion (6.54) is cumbersome to solve if Rey is known and f is wanted. There are many al-
ternate approximations in the literature from which f can be computed explicitly from Re,

[ 0.316 Re; 1™ 4000 < Re, < 10° H. Blasius (1911}

Rey)*
L(I.S log MJ Ref. 9

f= (6.55)



Effect of Rough Walls
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It was not known until experiments in 1800 by Coulomb [6] that surface roughness has
an effect on friction resistance. It turns out that the effect is negligible for laminar pipe
flow, and all the laminar formulas derived in this section are valid for rough walls also.
But turbulent flow is strongly affected by roughness.

Measurements of u(y) in turbulent rough-wall flow by Prandtl’s student Nikuradse
[7] show, as in Fig. 6.12a, that a roughness height € will force the logarithm-law pro-
file outward on the abscissa by an amount approximately equal to In €', where " =
eu*fr. The slope of the logarithm law remains the same, 1/k, but the shift outward
causes the constant B to be less by an amount AB = (1/k) In €.

Mikuradse [7] simulated roughness by gluing uniform sand grains onto the inner
walls of the pipes. He then measured the pressure drops and flow rates and correlated
friction factor versus Reynolds number in Fig. 6.125. We see that laminar friction is
unaffected. but turbulent friction, after an onset point, increases monotonically with the
roughness ratio &'d. For any given &/d, the friction factor becomes constant {fully rough)

at high Reynolds numbers. These points of change are certain values of €™ = eu*/i:
en¥ . ..
< 5:  hydraulically smooth walls, no effect of roughness on friction
'
&
5="=70: transitional roughness, moderate Reynolds-number effect
P
P
- 70 Jully rough flow, sublayer totally broken up and friction
r

independent of Reynolds number

Fig. 6.12 Effect of wall roughness
on turbulent pipe flow. (@) The log-
arithmic overlap-velocity profile
shifts down and to the right: (&) ex-
periments with sand-grain rough-
ness by MNikuradse [7] show a sys-
tematic increase of the turbulent
friction factor with the roughness
ratio. =)

002 —
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Chapter 6

The Moody Chart In 1939 to cover the transitionally rough range, Colebrook [9] combined the smooth-
wall [Eq. (6.54)] and fully rough [Eq. (6.63)] relations into a clever interpolation for-
mula

This is the accepted design formula for turbulent friction. It was plotted in 1944 by
Moody [&] into what is now called the Moody chart for pipe friction (Fig. 6.13). The
Moody chart is probably the most famous and useful figure in fluid mechanics. It is
accurate to * 15 percent for design calculations over the full range shown in Fig. 6.13.
It can be used for circular and noncircular (Sec. 6.6) pipe flows and for open-channel
flows (Chap. 10). The data can even be adapted as an approximation to boundary-layer
flows (Chap. 7).

Equation (6.64) is cumbersome to evaluate for fif Re, is known, although it easily vields
to the EES Equation Solver. An altemate explicit formula given by Haaland [33] as

6.9 eld
1.8 log | (6.64a)

- | Re \3.
varies less than 2 percent from Eq. (6.64).

The shaded area in the Moody chart indicates the range where transition from lam-
inar to turbulent flow occurs. There are no reliable friction factors in this range, 2000 <
Rey <7 4000, Notice that the roughness curves are nearly horizontal in the fully rough
regime to the right of the dashed line.
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Chapter 6

l. Givend. L. and V or . p, u. and g. compute the head loss fi; (head-loss prob-
lem).

Three Types of Pipe-Flow
Problems

2. Given d, L, hy p, ., and g, compute the velocity V or flow rate Q (flow-rate
problem).

3. Given @, L. hy. p. ., and g. compute the diameter d of the pipe (sizing problem).

Only problem 1 is well suited to the Moody chart. We have to iterate to compute velocity
or diameter because both o and V are contained in the ordinate and the abscissa of the chart.

Type 2 Problem: Even though velocity (or flow rate) appears in both the ordinate and the abscissa on

Find the Flow Rate the Moody chart, iteration for turbulent flow is nevertheless quite fast, because f varies
so slowly with Re,. Alternately, in the spirit of Example 5.7, we could change the scal-
ing variables to {p, w. ) and thus arrive at dimensionless head loss versus dimension-
less velocity. The result is*

dh 2
{=fen(Rey)  where (= EL—V;f - szﬁ (6.65)

Example 5.7 did this and offered the simple correlation { = 0.155 Rej ", which is valid
for turbulent flow with smooth walls and Re; = 1 E5.

A formula valid for all turbulent pipe flows is found by simply rewriting the Cole-
brook interpolation, Eq. (6.64), in the form of Eq. (6.65):

3
- eld 1.775 gd by
= — 4 = 5 K
Rey = —(80)"2 log (3_? Vi > (6.66)
Given {, we compute Re, (and hence velocity) directly.
3 Problem: Find the The Moody chart is especially awkward for finding the pipe size, since d occurs in all
3 ) pecially E pipe

Diameter three parameters f. Re,, and e/d.
simply set up the problem as an iteration in terms of the
Moody-chart variables.
First write the diameter in terms of the friction factor:
fopd2e _m ghd
TLv: 8 Lg?
Also write the Reynolds number and roughness ratio in terms of the diameter: Rey =

(1 (2
Vd _ 40
r i

Guess f, compute o from (1), then compute Re, from (2) and /d from (3), and compute a bet-
ter f from the Moody chant or Eq. (6.64). Repeat until (fairly rapid) convergence.

i3

=y



Chapter 6

The Hydraulic Diameter For a noncircular duct, the control-volume concept of Fig. 6.10 is still valid, but the
cross-sectional area A does not equal 7R and the cross-sectional perimeter wetted by
the shear stress 2 does not equal 2wR. The momentum equation {6.26) thus becomes

Ap A+ pgA ALsind — 7, P AL=10

or =28 4 pp - T AL (6.70)
P pg AIP

This is identical to Eq. (6.27) except that (1) the shear stress is an average value inte-
grated around the perimeter and (2) the length scale A/% takes the place of the pipe
radius R. For this reason a noncircular duct is said to have a hydraulic radius Ry, de-
fined by

This concept receives constant use in open-channel flow (Chap. 10), where the chan-
nel cross section is almost never circular. If, by comparison to Eq. (6.29) for pipe flow,
we define the friction factor in terms of average shear

8_“"
NCD = - (6.72)

he=f-—— (6.73)

This is equivalent to Eq. (6.30) for pipe flow except that & is replaced by 4R;. There-
fore we customarily define the fivdraulic diameter as

_4A 4 ¥ area

D, = 4R, (6.74)

#  wetted perimeter

We should stress that the wetted perimeter includes all surfaces acted upon by the shear
stress. For example, in a circular annulus, both the outer and the inner perimeter should
be added. The fact that [}, equals 4R, is just one of those things: Chalk it up to an en-
gineer's sense of humor. Note that for the degenerate case of a circular pipe, Iy, =
AwR*(2mwR) = 2R, as expected.

We would therefore expect by dimensional analysis that this friction factor f, based
upon hydraulic diameter as in Eq. (6.72), would correlate with the Reynolds number
and roughness ratio based upon the hydraulic diameter

f=H2 ,i) 6.75)
¥ D;'

and this is the way the data are correlated. But we should not necessarily expect the
Moody chart (Fig. 6.13) to hold exactly in terms of this new length scale. And it does
not, but it is surprisingly accurate:

64
RC;}n

=40% laminar flow
f= (6.76)

fM.,.,dy(Reﬂ‘, Di) +15%  turbulent flow
h



6.7 Minor Losses in Pipe
Systems

(a)

Flg. 6.21 Entrance and exit loss co-
efficients: (a) reentrant inlets;

(b} rounded and beveled inlets. Exit  (h)
Iosses are K == 1.0 for all shapes of

exit (reentrant, sharp, beveled, or
rounded). {From Refl 37.)

Chapter 6

For any pipe system, in addition to the Moody-type friction loss computed for the length
of pipe, there are additional so-called minor losses due to

Pipe entrance or exit

Sudden expansion or contraction
Bends, elbows, tees, and other fittings
Valves, open or partially closed

e

Gradual expansions or contractions

The measured minor loss is usually given as a ratio of the head loss h,, = Apf{pg)
through the device to the velocity head V7/{2g) of the associated piping system

Loss coefficient K — —1n— — 42 (6.98)
Vi2g)  pv?
A single pipe system may have many minor losses. Since all are correlated with
1-”2!{23], they can be summed into a single total system loss if the pipe has constant
diameter

-

-'i'rlln.'l = -'I'1." + .\.hl.'l - Ll‘l% o \‘-‘ﬁ_‘ II| (6. 100)
FLim =\ g =)

Note, however, that we must sum the losses separately if the pipe size changes so that
V* changes. The length L in Eq. (6.100) is the total length of the pipe axis, including
any bends.

¢ '——I— Table 6.5 Resistance Coefficients

_L ——y K= hol Fﬂfflg)] for Open Valves, Nominal diameter, in
T Elbows, and Tees Serewed Flanged
} 1 2 4 1 2 4 B 20
Valves (fully open):
Globe 14 82 69 57 13 83 6.0 58 35
Gate 0.30 0.24 0.16 01l 0.80 0.35 016 0.07 0.03
Swing check 5l 29 21 20 .0 2.0 20 20 20
Angle 9.0 47 20 1.0 43 24 20 20 20
Elbows:
45° regular 0.39 0.32 0.30 0.29
45° long radius 0.21 0.20 019 016 0.14
oo W0° regular 20 1.5 0.95 0.64 0.50 0.39 030 0.26 0.21
. W0° long radius 1.0 0.72 041 0.23 0.40 0.30 0.19 015 0.10
50° | g 180° regular 20 1.5 0.95 0.64 041 0.35 0.30 0.25 0.20
d 1807 long radius 0.40 0.30 021 015 0.10
30° Tees:
Line flow 0.90 0.90 0.90 0.90 0.24 0.19 014 0.10 0.07
| | 5 Branch flow 24 1.8 14 1.1 1.0 0.80 064 0.58 041
010 015 0.20
L L
d d



Chapter 6

Multiple-Pipe Systems

Figure 6.24 shows three examples of multiple-pipe systems. The first is a set of three
{or more) pipes in series. Rule | is that the flow rate is the same in all pipes

¢ =0:= ;= const

or Vid: = Vad3 = Vad? (6.105)

Rule 2 is that the total head loss through the system equals the sum of the head loss
in each pipe

M&—&E = M| + Mg + .I'ljf_‘!, {5.'06}

The second multiple-pipe system s the parallel-flow case shown in Fig. 6.24b. Here
the loss is the same in each pipe, and the total flow is the sum of the individual flows

.ﬁ.h_),_,3= .ﬁh| = ﬁhl = M_‘{ (6. 10%7)
Q=00+ + 05 (6.1095)

Consider the third example of a three-reservoir pipe junction, as in Fig. 6.24¢c. If all
flows are considered positive toward the junction, then

O +0:,+0,=0 (6.110)

which obviously implies that one or two of the flows must be away from the junction.
The pressure must change through each pipe s0 as to give the same static pressure py
at the junction. In other words, let the HGL at the junction have the elevation

h.r=-.r+EL
PE

where p; is in gage pressure for simplicity. Then the head loss through each. assum-
ing py = p; = p; = 0 (gage) at each reservoir surface, must be such that

.&JH = ﬁ‘f—lL] = 7

Z1 _Jf;
2g d,
Amy=Y2lBla _ .y, G.111)
2g ds

J'f‘-.ﬁ_z:Ef_}Ll:E}_h

2 ds ’

0 © ®
]
A w —— - —_— I —_— s

[eh

Fig. 6.24 Examples of multiple-
pipe systems: (a) pipes in series;
() pipes in parallel; {c) the three-
reservoir junction problem.



Multiple-Pipe Systems

Chapter 6

The ultimate case of a multipipe system is the piping network illustrated in Fig. 6.25.
This might represent a water supply system for an apartment or subdivision or even a
city. This network is quite complex algebraically but follows the same basic rules:

B ® ® .

|1 'I !
] | |
II| II"\-\. III III ?-\:I--'f -"f-- IIII II'.
~0 [ 2\
1 \ —. D ﬁ'-f \ I".
T \\ I'l !
I|I .xlll \\ . Loop IV f_f__,-*" I
g
O '.I I'. Loop 111 \“\\Q\\‘-{' @ P \
(] . \\- a-':_,,-"‘:_,"'i
III I| @ " \\‘____. f___.-'-f
p :
Fig. 6.25 Schematic of a piping . I//
network. e

I. The net flow into any junction must be zero.

2. The net head loss around any closed loop must be zero. In other words, the HGL
at each junction must have one and only one elevation.

3. All head losses must satisfly the Moody and minor-loss friction correlations.
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