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Viscosity
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Presenter
Presentation Notes
For solids, shear stress is proportional to shear strain. 
For fluids, shear stress is related to the rate of strain that is related to the velocity gradient.
For Newtonian fluids, the relation is linear and the proportionality is termed as viscosity, more specifically the dynamic viscosity.
Kinematic viscosity is the dynamic viscosity divided by the fluid density.
Shear force is the product of shear stress and the area of surface where the stress is acting on.
All other fluids of which shear stress is related non-linearly to the velocity gradient, such fluids are called as non-Newtonian fluids.


Vapor Pressure and Cavitation

e Vapor pressure: Below which a liquid evaporates, i.e., changes
to a gas. If the pressure drop is due to
O Temperature effect: Boiling
O Fluid velocity: Cavitation

Cavitation formed on a marine propeller


Presenter
Presentation Notes
Liquids evaporate below its vapor pressure.
If the pressure change is due to fluid flow, it is called as cavitation.
If the pressure change is due to thermal effect, it is call as boiling.
A dimensionless cavitation number is defined by subtracting the vapor pressure from local pressure.
If the number has a negative value, it implies cavitation.


Surface Tension

developed at the interface of two i
immiscible fluids (e.g., liquid-gas) due to

the unbalanced molecular cohesive
forces at the fluid surface.

- A molecule
on the surface
Surface tension force: The force / i

Attractive forces acting on a
liquid molecule at the surface
and deep inside the liquid

ol
F,=0-L oL

F,; = Line force with direction normal to the cut L

o = Surface tension [N/m], the intensity of the ool

molecular attraction per unit length N ke

L = Length of cut through the interface

.\
=)

Liquid

The forces acting on a liquid column that has
risen in a tube due to the capillary effect
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Presentation Notes
Surface tension force develops due to the unbalanced molecular cohesive forces at the fluid surface that contact to another immiscible fluid, such as liquid and gas.
Surface tension force is a line force that is defined as the surface tension times the length of the interface line.


Equations of Fluid Motions

Newton’s 2" law (per unit volume):

pg=2£

where, X f = fpody + fsurface and fsurface = fpressure + fshear
Viscous fluids flow (Navier-Stokes equation):
pa = —pgk — Vp + uv?y
Inviscid fluids flow (u = 0; Euler equation):
pa = —pgk — Vp

Fluids at rest (No motion, i.e.,a = 0):

—~

Vp = —pgk



Pressure Variation with Elevation

For fluids at rest,

dp Op
—_— = O
dx Jdy
and Z
op gl T
0z 4 AV
For constant y (e.g., liquids), by integrating the above
equations, P=-7
p=-yz+C

Atz=0,p = C =0 (gage),
2 4

= The pressure increases linearly with depth.
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Presentation Notes
From the Newton’s 2nd law,


Hydrostatic Forces: (1) Inclined surfaces

Center of

ressure )
kL Centroid

of area

e Average pressure on the surface

p =pc = Yh,

 The magnitude of the resultant
force is simply

Fr =pA=yhA

e Pressure center
IXC

VeA

YR =Yc T



Hydrostatic Forces: (2) Curved surfaces

LU

F, = ﬁproj . Aproj

E y = YVabove 4B
W = y¥pc

I
I Vertical projection
I

Curved ; of the curved surface

surface

Free-body diagram
of the enclosed
liquid block

I
I
I
)

Cc

* Horizontal force component: Fy = F,

e Vertical force component: Fy, = E, + W = y¥otal volume above Ac

* Resultant force: Fg = /FE, + F7?



Buoyancy: (1) Immersed bodies

~ F, (1)

Surface Fo =F,, — F,, = v¥
- B V2 vi=Y

e Fluid weight equivalent to body
volume ¥

e Line of action (or the center of
buoyancy) is through the

Surface centroid of ¥, ¢

2

Fy(2)



Buoyancy: (2) Floating bodies

Neglect the displaced air up here.

(Displaced volume) > ( v of fluid) = body weight

Fg = y¥iisplaced volume (i-€., the weight of displaced water)

Line of action (or the center of buoyancy) is through the centroid of
the displaced volume
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Stability: (1) Immersed bodies

AV AV
S ®
b (7 ‘0
Restoring Overturning

couple couple
Stable up Unstable P

If ¢ is above G: Stable (righting moment when heeled)
If ¢ is below G: Unstable (heeling moment when heeled)
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Stability: (2) Floating bodies

e GM > 0:Stable (M is above G)
e GM < 0:Unstable (G is above M)

Ioo
GM =——CG
174
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Rigid-body motion: (1) Translation

Fluid

at rest

e Fluid at rest

ap__
0O 5, = P8

O p=pgz

e Rigid-body in translation with
a constant acceleration,

o~

a=a,l+a,k

6p__
O E— pG

O p=pGs

1
G=(az+ (g+a,)?)2

a
0 = tan ! —=

gt+a,



Rigid-body motion: (2) Rotation

e Rigid-body in translation with
a constant rotational speed (3,

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a=-r0%e,
op 2 dp
0O —=prQ“and—= —
or p 0z ps
__ Sall-water
level
0 ngrzﬂz —pgz+ C
Axis of __—y
rotation | \ "
s — Q
2 0 Z=p‘;gp+2gr2
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Flow Patterns

e Pathline: The actual path traveled by a given fluid particle.

e Streamline: A line that is everywhere tangent to the velocity vector
at a given instant.

e Streakline: The locus of particles which have earlier passed through
a particular point.

* For steady flow, all three lines coincide.

l Dye or smoke
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Fluid particle at some
intermediate time -1

Pathline Streamline Streakline
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Bernoulli Equation

Integration of the Euler equation for a
steady incompressible flow:

Along a streamline:

p +

1

2

pV? + yz = Constant

Across the streamline:

p+p

VZ

R

dn + yz = Constant

Z

1!
2
= constant

p+

V2

p+pjﬁdn+ Z

= constant

e

pV2 + 7z




Flow Kinematics: (1) Lagrangian Description

Fluid particle at r = ¢,

-
+* Y
4 o
Pathline ¥
- *
'o" - »?
&R
"-'

\ Fluid particle at r =1y

Fluid particle at some
intermediate time

Keep track of individual fluid particles

(1) = ax _ u, ()i + v, ()] + wy (DK

L dt
dx dy dz
up =E,Up =E,Wp =E
dVp .
@=—7= a,i+ay,j+azk
du dv dw
a, = p 14 a, = p

KA T dt



Flow Kinematics: (2) Eulerian Description

e Focus attention on a fixed point in
space

V(x,t) =ul(xt)i+v(x t)j + w(x, t)ﬁ

DV A A “
Q=D—?=axl+ay]+azk
Or,
u Jdu Ju Ju
Ay =—t+u—+v—+w—
dt dx dy 0z
v v v v
ay = —4+u—+tv—+w—
ot 0x dy 0z
ow ow ow ow
a, ——+u—+v—+w—

dt dx dy 0z



Acceleration and material derivatives —Contd.

Acceleration

DV V
a=—-—=—=+ (V-7")V
B t ““"‘at Co_nvectiv_e

1
L;CCCE_‘ acc.

)4 . . : :
0= Local or temporal acceleration. Velocity changes with respect to time at a

given point
o) (K - V)K = Convective acceleration. Spatial gradients of velocity

Material derivative:

0
=5+ (V-7)

where



System vs. Control volume

e System: A collection of real matter of fixed identity.

e Control volume (CV): A geometric or an imaginary volume in space
through which fluid may flow. A CV may move or deform.

Control Control
surface surface
r o 7/7 B 7} :r ________ /_ _______ l—vP Control
JT) } : : surface
N | | | \
| . | | =
— || _t 14 | 174 : :
2 ] | o—I|
0D l i | :? :
I 1 . _J' L 7%

(a) (b) (c)
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Reynolds Transport Theorem (RTT)

* In fluid mechanics, we are usually interested in a region of space, i.e.,
CV and not particular systems. Therefore, we need to transform GDE’s
from a system to a CV, which is accomplished through the use of RTT

D Bgys D
= Dt BpaV + BpVy - dA
time rate of change , . :
of B for a svstem time rate of change net flux of B
y of Bin CV across CS

where, f = g—i = (1,[, e) for B = (m,mV,E)

e Fixed CV,

Note:

DB 0 Bcy = Cvﬂdm deV

sys __
Dt ot ﬁpdVJr ppV -ad Bcs—fﬁdm—fﬁpKdé
CS CS CS




Continuity Equation

e RTTwithB=mandpf =1,

a ~ = " Out
— pdV+f pV,-ndA =0 e NI £ S g
ot — ! v
Cv CS \/\/“ Fixed \\\
Ve control

volume 1
/

-
Out7/7- - i\\
Out\ ¥
My

Mg

* Steady flow with fixed CV, 7,
W
| pv-aa=o
CS

* One-dimensional Note: m = pQ = pVA

Zmout - Zmin =0
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Linear Momentum Equation
e RTTwithB=mVandp =V,

i(j Vpdv>+j Vp(% n) dA = SF
dt cvV cs B

e Steady flow with fixed CV, o= Taou
ma, ~Jn < — M3

| vow mda=sr NN
CS P Fixed \\
e One-dimensional, { ﬁglnl}:r?(lz 1
IV 7
/ ~ .._// /\

. 3 . m1V1 N\ —
Z(Tnz)out B Z(Tnz)m o ZE out / Dul\\S XF

MeV; .

or in component forms,

Note: If V = ui + vj + wk
Z(mu)out - Z(ﬁ’LU)in = ZFx is normal to CS, m = pVA,

Z(mv)out o Z(mv)in ZFy where V = |K|

Z(mw)out_Z(Thw)in = YE
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Linear Momentum Equation — Cont.

(Pressure

e External forces:

XE = ZEbody + X Fsurface T 2Eother

0] ZEbody = ZEgravity TF (Reaction force)
R caction rorce

ZEgravity: gravity fOI"CE (i.e., WEIght) An 180° elbow supported by the ground

In most flow systems, the force F
consists of weights, pressure forces,

O ZESurface - ZEpressure + ZEfriction and reaction forces. Gage pressures
are used here since atmospheric

ressure cancels out on all sides
* ZEpressure: pressure forces normal to CS i of the control surface.

Eyressure = fcs pgage(_ﬂ)dA
* Y Ffriction: Viscous friction forces tangent to CS
0 Y. F,iher: anchoring forces or reaction forces

Note: Shearing forces can be avoided by carefully selecting
the CV such that CS’s are parallel with the flow direction.




Angular Momentum Equation

e RTTwithB=[rxVdmandp =rxV,

Z%=%U€V(txz)pdV]+LS(£XK)p(E-E)dA

e Steady flow with fixed CV,

$Mo = [ (X Vp(r m)aa

e One-dimensional,

2% — Z(f X K)Outmout - Z(Z X K)inmin



Energy Equation

RTTwithB =FE and f = e,

0 L
— epdV+j epV -dA=Q—-W

at Jey cs

Simplified form:

2
Pin Vin Pout
—+ ain=—+zin+hy =—+
y alnzg Zin 14 y

2
Vo ut

“outz_g + Zoue + At + Ay,

V in energy equation refers to average velocity V

« : kinetic energy correction factor =

1 for uniform flow across CS
2 for laminar pipe flow
~ 1 for turbulent pipe flow



Energy Equation - Contd.

Uniform flow across CS’s:

P1 V12 P2 V22
7+2—g+Zl+hp=7+2—g+Zl+ht+hL

W, 1% 1% . .
e Pump head h, = m’; = prg = yg = W, = mgh, = pgQh, = yQh,
e Turbinehead h; = n% = pLth = % = W, = mgh, = pgQh; = yQh,

* Head loss h; =loss/g = (i, —0,)/g— Q/mg >0



Differential Analysis

- Fluid Element Kinematics

“--‘_____\

Element at 7, Element at 7, + &t
,/”/1/////
r |
7
\ ! r’ | | i | ="\
j ' /’__1
f | | | P \ /
,! B | | |+ I + x\ \1l N //
L——"" | ] [ | | \ /
1 =" [
General Translation Linear Rotation Angular
motion deformation deformation
e Linear deformation(dilatation): V - V
= if the fluid is incompressible V- V=20
e Rotation(vorticity): { = 2w =V XV
= if the fluid is irrotational VXV =20

* Angular deformation is related to shearing stress
(e.g., T;j = 2ug;; for Newtonian fluids )



Differential Analysis
- Mass Conservation

For a fluid particle,

. dp
lim j —d¥+j pV -dA

. dp
_C1¢@0LV[E+V-(pK)]du_ 0

ap B
woo V- (pV) =0

For an incompressible flow: V -V =0



Differential Analysis
- Momentum Conservation

V"OUCV pd¥+ VpV dA] EF

or
| oV
lim [ p(=+V- V"V d¥=Z£
CV-0 Jey at — —
aV :
“Pl o +V-vv)= ) f (f = F per unit volume)
)4 _
= p —t+K-\7£ = —pgk —Vp + V-1
’ body force dueto  Pressure  yiscous shear
:%:a gravity force force force
t =

surface force



Navier-Stokes Equations

For incompressible, Newtonian fluids,
e Continuity:

6u+6v+aw_
dx dy 0z

e Momentum:

6u+ 6u+ 6u+ ou 6p+ N 62u+62u+62u
P “ v v ax | PBx T 5x2 dy?  0z2

dt 0x dy 0z
<6v ov  Ov 6v> op %v  9%v 6217)
p

E-Fua'i'va'i'W& —@+pgy+u<ax2+ay2+azz

(aw ow  ow 6W> op 0*w 0w 62W>
p

ot " Yox Yoy Tz =_£+pgz+“<ax2 57 T oz



1)

2)

3)

4)
5)

6)

Solving the N.S. Equations

Set up the problem and geometry (e.g., sketches), identifying all relevant
dimensions and parameters.

List all appropriate assumptions, approximations, simplifications, and
boundary conditions.

Simplify the differential equations of motion (continuity and Navier-
Stokes) as much as possible.

Integrate the equations, leading to one or more constants of integration
Apply boundary conditions to solve for the constants of integration.

Verify your results.



Exact Solutions of NS Eqgns.

The flow of interest is assumed additionally (than incompressible & Newtonian), for
example,

1) Steady (i.e., d/0t = 0 for any variable)

2) Parallel such that the y-component of velocity is zero (i.e., v = 0)

3) Purely two dimensional (i.e., w = 0 and d/9z = 0 for any velocity component)

e.g.)

1) continui continujty 3)
9) N 9] )8 + N 02 azu 02
P Vot Y ox Pbx T K x2 ay z?




Boundary Conditions

Common BC’s:
e No-slip condition (Vuiqg = Viwan; for a stationary wall Vg = 0)
* Interface boundary condition (V4 = Vg and 75 4 = 75 )
* Free-surface boundary condition (pjiquia = Pgas and T liquia = 0)
e Symmetry boundary condition

Other BC's:

e Inlet/outlet boundary condition
e |nitial condition (for unsteady flow problem)

Magnifying

‘_I Piston glass

X

FIGURE 9-51

A piston moving at speed Vin a
cylinder. A thin film of oil is sheared
between the piston and the cylinder; a
magnified view of the oil film is
shown. The no-slip boundary
condition requires that the velocity of
fluid adjacent to a wall equal that of
the wall.

Fluid B
. P
s Vi 1 5B
n = B el L
- Va |_____:
Fluid A
FIGURE 9-52

At an interface between two fluids, the
velocity of the two fluids must be
equal. In addition, the shear stress
parallel to the interface must be the
same in both fluids.

Fluid B—air
Uy
———— ey Rp—
—_—
Y Wyater

FIGURE 9-53

Along a horizontal free surface of
water and air, the water and air
velocities must be equal and the shear
stresses must match. However, since
Mgir = Myarer @ £00d approximation
is that the shear stress at the water
surface is negligibly small.

P = continuous

Symmetry plane
1}"

L.
FIGURE 9-54

Boundary conditions along a plane of
symmetry are defined so as to ensure
that the flow field on one side of the
symmetry plane is a mirror image of
that on the other side, as shown here
for a horizontal symmetry plane.




Buckingham Pi Theorem

1. List all the variable that are involved in the problem
U = f(UZ,ug, "'run)

2. Express each of the variables in terms of basic
dimensions (FLT or MLT)

3. Determine the required number of pi terms
r=n—-m

4. Select a number of repeating variables, where the
number required is equal to the reference dimensions



Buckingham Pi Theorem - Cont.

5. Form a pi term by multiplying one of the nonrepeating
variables by the product of the repeating variables, each raised
to an exponent that will make combination dimensionless

w;udubu§ = FOLOTO

6. Repeat Step 5 for each of the remaining nonrepeating
variables

7. Check all the resulting pi terms to make sure they are
dimensionless

8. Express the final form as a relationship along pi terms, and
think about what it means

[, = Qb(nz» s, -, Hr)
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