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Fig. 1.9 Pressure change across a curved interface due to surface tension: (a) interior of a liquid cylinder: (&) interior of a spherical
droplet: (c) general curved interface.



1.8 Basic Flow-Analysis
Techniques

Chapter 1

There are three basic ways to attack a fluid-flow problem. They are equally important
for a student learning the subject, and this book tries to give adequate coverage to each
method:

1. Control-volume, or integral analysis (Chap. 3)

2. Infinitesimal system. or differential analysis (Chap. 4)

3. Experimental study. or dimensional analysis (Chap. 5)

In all cases, the flow must satisfy the three basic laws of mechanics® plus a thermo-
dynamic state relation and associated boundary conditions:

Conservation of mass (continuity)

Linear momentum (Newton's second law)

First law of thermodynamics (conservation of energy)
A state relation like p = p(p, T)

Appropriate boundary conditions at solid surfaces, interfaces, inlets, and exits

e

In integral and differential analyses, these five relations are modeled mathematically
and solved by computational methods. In an experimental study. the flud itself per-
forms this task without the use of any mathematics. In other words, these laws are be-
lieved to be fundamental to physics, and no fluid flow 1s known to violate them.
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If the fluid is at rest or at constant velocity., Vp = pg

Any two points at the same elevation in a continuous mass of the same static fluid

n =P+ ylAz .
Pown T' | will be at the same pressure.

F — P:.‘A = 2 ?;.i'f_"(].*1. = {Pu + }l'h{_'(‘; 4 = F:_".;_';A

The horizontal component of force on a curved surface equals the force on the plane
area formed by the projection of the curved surface onto a vertical plane normal to
the component.

The vertical component of pressure force on a curved surface equals in magnitude
and direction the weight of the entire column of flud, both liquid and atmosphere,
above the curved surface.

1. A body immersed in a fluid experiences a vertical buoyant force equal to the
weight of the fluid it displaces.

2. A floating body displaces its own weight in the flmd in which it floats.

(e = 2 pig(displaced volume);
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If the control volume has only a number of one-dimensional inlets and outlets, we can
write

-dV + \_ (piA;i Vi ou l (p: AV, =0

Incompressible Flow E (Vidi) ou = Z (Vididin
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Chapter 3

Linear Momentum SF="-(| Vpd¥|+ | Vp(V:n)dA
One-Dimensional Momentum TF=9 | II Vo d¥) 0V Do o
Flux £, & V& £, 2

Net Pressure Force on a Closed . J

g - Foress = (p— pal—n) dA =J asel — M) dA
Control Surface press = Jog (P 7 PalTI) s Penes(T1)

p| WwdA = BV = BpAVZ
Momentum-Flux Correction

Factor 1 o \2
Bl (7)o
Laminar flow: u= Un(] — %) B =%
Turbulent flow: = U1 — L\ 1 =m= 1
‘ R 9 " 5

> F=m(BV2— BiVy)



Chapter 3

|. ||':-<\'Jp;."'l"+|l (r x V)p(V - n) dA
. o

S 4
-.':"" =

ir

Angular-Momentum > M= =

one-dimensional inlets and exits J;_-g (r > V)p(V - n) dA = Z (r X Vout it ou _E (r X V)in fitin

= . ’ P—W —-W =— [ 4 + L 2y s e | [ f+ !‘ 24 i Ti f
Energy Equation ‘il AL at | Jey LR ) '*“-__I"':'””I | " s |._“" z Vot & _.! p(V * n) dA

(h+3V*+ g2)p(V - n) dA
One-Dimensional Energy-Flux ™%

Terms =" (h + 1V gDoutitom — > (h + 1V + g2ty

- 2 - 2
o d Vi P2yl (VI ikt hy

The Steady-Flow Energy Equation z
: e Yy & 2 Yy & 2 !
et 1 e I P X iy | I P ¥ £ | i g .
i:’lftlﬂl] LDSSES mn LD“ SPEEd |.-:;_ T -:,L_ v L] -_| = | :i_ L _-,_ b L] :i T Morbine hpun:r LB JIIr!r'...".l- n
oW \ P L [in \ pe g | ot
J. (JZ'VE],D(V “n)dA = Gf(JfViv)ﬂ‘f . 3 Laminar flow:
port a = 1 J _ dA )
..'4. er frodm which

Kinetic-Energy Correction Factor , V. - % [wdt  for incompressible flow

u= Ug[l - (%
V,, = 0.5U,
a=20

)]



Chapter 3

Frictionless Flow: 2 Ay
' Bernoulli Equation _.|, ot

steady (#V/dt = 0) incompressible (constant-density) flow 2Ly % Vit gz, = L2 é V3+ gz, = const
p 2 p

Relation between the Bernoulli The complete list of assumptions

and Steady-Flow Energy . .

Fquatimls' &l 1. Steady flow—a common assumption applicable to many flows.

’ 2. Incompressible flow—acceptable if the flow Mach number is less than 0.3.
3. Frictionless flow—very restrictive, solid walls introduce friction effects.
4. Flow along a single streamline—different streamlines may have different

“Bernoulli constants™ wg = plp + V2 + gz, depending upon flow conditions.

3. No shaft work between I and 2—no pumps or turbines on the streamline.
6. No heat transfer between 1 and 2—either added or removed.

Thus our warning: Be wary of misuse of the Bemoulli equation. Only a certain lim-
ited set of flows satisfies all six assumptions above. The usual momentum or “me-
chanical force™ denvation of the Bernoulli equation does not even reveal items 5 and
6, which are thermodynamic limitations. The basic reason for restrictions 5 and 6 is
that heat transfer and work transfer, in real fluids, are marned to frictional effects,
which therefore invalidate our assumption of frictionless flow.
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Fig. 4.4 Elemental cartesian fixed
control volume showing the surface
forces in the x direction only.
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Solid contact:
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The Pi Theorem

Chapter 5

If a physical process satisfies the PDH and involves n dimensional variables, it can
be reduced to a relation between only k dimensionless variables or IT's. The reduc-
tion j = n — k equals the maximum number of variables which do not form a pi
among themselves and 1s always less than or equal to the number of dimensions de-
scribing the variables.

Find the reduction j, then select j scaling variables which do not form a pi among
themselves.* Each desired pi group will be a power product of these j variables plus
one additional variable which is assigned any convenient nonzero exponent. Each
pi group thus found is independent.

1. List and count the n variables involved in the problem. If any important vari-
ables are missing, dimensional analysis will fail.

2. List the dimensions of each variable according to {MLT®} or {FLTO}. A list 1s
given in Table 5.1.

3. Find j. Initially guess j equal to the number of different dimensions present, and
look for j variables which do not form a pi product. If no luck, reduce j by 1
and look again. With practice, you will find j rapidly.

4. Select j scaling parameters which do not form a pi product. Make sure they
please you and have some generality if possible, because they will then appear
in every one of your pi groups. Pick density or velocity or length. Do not pick
surface tension, e.g., or you will form six different independent Weber-number
parameters and thoroughly annoy yvour colleagues.

5. Add one additional variable to your j repeating variables, and form a power
product. Algebraically find the exponents which make the product dimension-
less. Try to arrange for your output or dependent variables (force, pressure drop,
torque, power) to appear in the numerator, and your plots will look better. Do

this sequentially, adding one new variable each time, and you will find all
n — j = k desired pi products.

6. Write the final dimensionless function, and check your work to make sure all p1
groups are dimensionless.
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