Chapters 1 Preliminary Concepts & 2 Fundamental Equations of Compressible
Viscous Flow

(3) Fundamental Equations of Compressible Viscous Flow

Laws of mechanics are written for a system, i.c., a fixed
amount of matter.
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. d
1. Conservation of mass: d_T =0

. d(mv
2. Conservation of momentum: F=ma = ( dt_)

3. Conservation of energy: db =Q-W

AE~=heat added — work done

Also -
dHg
Conservation of angular momentum: —-T— =Mg
. dS 8Q .
Second Law of Thermodynamics: % = T +6

&. entropy production due to system irreversibilities
6<0



In fluid mechanics we are usually interested in a region of
space, i.e, control volume and not particular systems.
Therefore, we need to transform GDE’s from a system to a
control volume, which is accomplished through the use of
RTT (actually derived
o¢ 1nthermodynamics for

v S CV forms of continuity

and 1% and 2™ laws, but

_,_-:3-&9"-
not in general form or
referred to as RTT).

Note GDE’s are of form:

d
Z (m, mV,E) = RHS
ar (v mVE)

system extensive properties By, depend on mass

Sys
dt
CV. Recall, definition of corresponding system intensive
properties

i.e., involve which needs to be related to changes in

B=(,V,e) independent of mass
where

B= [Bdm = [BpdV

Le., B= SIEB



Revynolds Transport Theorem (RTT)

d :
Need relationship between " (Bsys) and changes in

B.y :ijﬂdm :cjv,deV.
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dBey
1 = time rate of change of B in CV = dt = j,Bp

2 = net outflux of B from CV across CS = I ppV g -0 dA
CS

As with Q and m, AB flux though A per unit time is:
dQ =Vz.ndA
dm = pVr.n dA
dAB = BpVr.n dA



Therefore:

dBgys
dt

Vs

d
” ijﬁp Cfsﬁp_R n

General form RTT for moving deforming control volume.

Specific CV cases depending on Vs (x, t).

1) Deforming CV: V* =V*(x,t)
(@) Vs = Vs(x, t) non-uniform/accelerating velocity
(b) Vs = Vs(x) uniform/constant velocity (steady

moving)
© J.oVs(x,t)-ndA = 0asawhole at rest

(stationary)

2) Non deforming CV: V* = V*(x)
(@) Vs = Vs(t) accelerating velocity
(b) Vs = constant velocity, i.e., relative inertial

coordinates (steady moving)
(c) Vs = 0 atrest (stationary)

3) Material volume: V; =V, V,. = 0 and RTT takes the

form: B o
dBsys d

st dt)y

B(x, t)p(x, t)dV
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Which can be written as:

4 B(z,t)p(z,t)dV=j 2050 v + ppV - ndA
t vy Ot

dt )y d MS

Using Green’s theorem: [ V- bdV = [.b-ndA

(Bp)

B(x,)p(x,t)dV = val + V- (Bp )] av

dt MV
And taking the limit for dVV' — 0 provides GDE:

d _36p)
2t ), PPV =g 7 Bew




Continuity Equation:

B = m = mass of system
=1
‘;—T = 0 Dby definition, system = fixed amount of mass
1) Most general integral form for deforming
accelerating/steady moving/stationary CV depending
on definition v;(x,t) (a) — (c) page 4:
d d
d—T =0= 7 (x t)dv + Jsp@, t) (K(&, t) _E(K' t)) -ndA

d
pdV = j pV,. -ndA
dt cv cs

Rate of decrease of mass in CV = net rate of mass outflow across CS

2) Most general integral form for non-deforming V; +#
V;(x) accelerating/steady moving/stationary CV, (a)-

(c) page 4:
dp(x,t) )
LV T LSP(% £) (Z(& t) - ﬁ(t)) -ndA =0

Vy




3) Incompressible flow— p(x,t) = constant.

(a) Deforming CV accelerating/steady moving/stationary,
I.e., conservation of volume:

d
~ | av= [ (vt - no) nds
dt cv CS _

(b) Non-deforming CV accelerating/steady
moving/stationary:

| (v@o) -u©®)-naa=o
cs ,

(c) Steady flow, i.e., % = 0. Two possibilities for V;: V; =
0, V. =constant. The RTT takes the form:

[ (@ -w) na=o
CS

(d) Flow over discrete inlet/outlet — the flux term can be

expressed as summation: —
For inlets:

z Qcs; = 0or Z(Q)Csin = Z(Q)csout F%r.(i;et(;:

Vorn>0

Non-uniform flow:
Qcs; = j (K(&) - E) ‘ndA = (VavA)CSi
CS v

Uniform flow:

For fixed CV, I, = 0:
QCSi = (K(K) _ E) . EA Qcs; = K(Q'EA




Differential Form:

= “%+ V. (pz)] dv

cv
=1
op
L v (oV)=0
= (pV)

%O+pv-\i+\i-v,0:0

D
'0+pVV 0
Dt
m=pvy = dm = pdV+Vdp=0= _d_V:d_
vV.op
1bp__1DV
o Dt v Dt
i1bp V.V o
p Dt —
—
rate of change p QU v ow_ 1Dp_ 1DV

ox oy oz pDt VDt

rate of change V
per unit Vv

Called the continuity equation since the implication is that
p and V are continuous functions of x.

per unit p

Incompressible Fluid: p = constant
V-V =0

ou av oW _

OX ay oz




Momentum Equation:
B = mV = momentum, § =V

Integral Form:
Amr) _ Lty pave [vev, nda=YE
\V} CS

dt fit K I ] 3
1 2
>F = vector sum of all forces acting on CV
= Fstks
Fg = Body forces, which act on entire CV of fluid due to

external force field such as gravity or electrostatic or
magnetic forces. Force per unit volume.

Fs = Surface forces, which act on entire CS due to normal
(pressure and viscous stress) and tangential (viscous
stresses) stresses. Force per unit area.

When CS cuts through solids Fs may also include Fr =
reaction forces, e.g., reaction force required to hold nozzle
or bend when CS cuts through bolts holding nozzle/bend
In place.

1 = rate of change of momentum in CV

2 = rate of outflux of momentum across CS

3 = vector sum of all body forces acting on entire CV
and surface forces acting on entire CS.

Many interesting applications of CV form of momentum
equation: vanes, nozzles, bends, rockets, forces on bodies,
water hammer, etc.

Differential Form:



J| 2 W)y (o) |av -3 E

Cv

Where & (v p)=v P+ ¥
ereat(_p) at+pat

and VoV = pVV = pui V + pvjV +,0w|2\1 IS a tensor.
0 o B

V-(UpY) =V-(pVV) == (puV) +—(pvV) +— (pW)
X oy 0z

=VV-(pV)+pV-W

IM% ‘(P\i)j+P(%+\L-V\LHdV=ZE

= 0, continuity
Since %\i +V-W =D—\ti
DV
Lo EE
- Zi per elemental fluid volume
p@ =1 +1,
f = body force per unit volume
Es = surface force per unit volume

10



Body forces are due to external fields such as gravity or
magnetic fields. Here we only consider a gravitational
field; that is,

ZEbody = dEgrav = ,OQ dXdde

and Q=—9|2 for lg r
ie. f_ =-pgk

—body

Surface Forces are due to the stresses that act on the sides

of the control surfaces.
O-ij - pé‘u + Ti'

Normal pressure / i\ Viscous stress
N}A - p + Txx Z-xy sz
| = T ) — p +7 T ,
/ ks y yy y
St Gy T T —p+7
L x 7y z |
b
/ Symmetric Ojj = Oj;
s 2" order tensor

Symmetry condition from requirement that for elemental
fluid volume, stresses themselves cause no rotation.

As shown before, for p alone it is not the stresses
themselves that cause a net force but their gradients.



Recall f,=-Vp based on 1% order TS. f. is more

complex since 7, is a 2" order tensor, but similarly as for

p, the force Is due to stress gradients and are derived
based on 1% order TS.

N N N
o, =0, 1+0, J+o,k Resultant
A A A stress
o,=0,i+0, j+o,k on each face
N N N
o, =0, i+aZy j+o,k
y oo
¢ / (ny +—= dyj dxdz
oy
>
dydz +=—r > a+%dxddz
O-XX y X XX ax y

z / i and similarly, for z face
G dXdZ o
(0 + azx dzjdydz o,

and j and k directions

9] 0 0
= [a (Oyy) + @ (ayx) + 3, (azx)] dxdydz 1

¥ 9 9 A
tox (0xy) + 3y (oyy) + 9z (Uzy)] dxdydz

- 0 d d .
+ e (0y,) + 3y (0y2) + ~ (azz)] dxdydz k
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F :{g(g )+%(G_)+§(G )}dxdydz

Divided by the volume:

= (o)t 2 (0,)+2(o,)

- x— oy = o
f_:5 = (ﬁl'ﬁ2'ﬂ3) = ﬁSi =V- Ojj =

Since cij= ojj

d

an

O-ij

According to Einstein
summation notation,
repeated indices are
implicitly summed
over:

Oji = 011 T 03 + 033

Putting together the above results,

DV ~
a=p—=—pgk+V.o;
pa=p-—==-p9 j

Inertial force
gravity

Note:
A = delta

body force surface force = p + viscous terms
due to (Due to stress gradients)

V =nabla (Hebrew “nebel” means lyre or ancient harp
used by David to entertain King Saul in praise of God)

Vf = vector

v.t = scalar

V-0, = vector (decreases 2" order tensor by one)
vi = tensor

vxv — Vector
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Next, we need to relate the stresses oij to the fluid motion,
l.e., the velocity field. To this end, we examine the
relative motion between two neighboring fluid particles.

B
/dr

A (uv,w) =V

@B: V+dV =V +VV.dr 1sorder Taylor Series

dV = (us-Ua, VB-Va, Wa-Wa)

u, U, U, |[dx
dv =Ww-dr=lv v, v, | dy|=¢g;dx,
/‘ W, oW, w, || dz |

relative' motion _
deformation rate

dv = dV; = (dVy, dV,, dVs) tensor = €,
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aui 1 aui au] 1 aui au]
= = + + = — = gij + a)ij

el-j = ==
symmetric part  anti—symmetric part
Eij=€ji Wij==wjj
n
f—/%
0 1(u —-V,) l(u —W,)
o\ X o\ X
1 1 .. )
w; =| =(v,—u,) 0 —(v, —w,) | =rigid body rotation
2 , 2 of fluid element
4
1 1
E(Wx_uz) E(Wy_vz) 0
%,—/
i S |

where &= rotation about x axis
n = rotation about y axis
¢= rotation about z axis

Note that the components of wj; are related to the vorticity
vector defined by:

0=VxV =W, -V,) 1+, -w,) j+V,-u) k=0l +o,]+ak
| N~ —_
28 21 28

= 2 x angular velocity of fluid element
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g; =rate of strain tensor

1 1
u “(u,+v) =(u, +w
2(y <) 2(Z <)

X

1 1
= E(vx+uy) v, E(Vz-i—Wy)

1 1
— (W, +U —\W, +V W
2( X z) 2( y z) z

U, +V, +W, = V-V = elongation (or volumetric dilatation)
_ 1 DV
of fluid element =Y Dt
%(uy +v ) = distortion wrt (X,y) plane
%(uz +w ) = distortion wrt (x,z) plane

%(VZ +w ) = distortion wrt (y,z) plane

Thus, general motion consists of:

1) pure translation described by V

2) rigid-body rotation described by w

3) volumetric dilatation described by V-V

4) distortion in shape described by s; 1#]
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It Is now necessary to make certain postulates concerning
the relationship between the fluid stress tensor (i) and
rate-of-deformation tensor (ejj). These postulates are
based on physical reasoning and experimental
observations and have been verified experimentally even
for extreme conditions. For a Newtonian fluid:

1) When the fluid is at rest the stress is hydrostatic and
the pressure is the thermodynamic pressure

2) Since there is no shearing action in rigid body
rotation, it causes no shear stress.

3) i Is linearly related to &jj and only depends on &j;.
4) There is no preferred direction in the fluid, so that

the fluid properties are point functions (condition of
Isotropy).

17



Using statements 1-3

1 (0u; auj
0ij = —POij + KijmnEmn  &j =3 (a_x, + a_xl-)

kimn = 4™ order tensor with 81 components (3x3x3x3)
such that each stress is linearly related to all nine
components of emn.

However, statement (4) requires that the fluid has no
directional preference, i.e., oj IS independent of rotation
of coordinate system, which means Kkijmn IS an isotropic
tensor = even order tensor made up of products of di.

K., =100, + 1o, 0. + 0.0,

ijmn ij mn im™~jn in® jm

(A, u,y) = scalars

Lastly, the symmetry condition cij= Gji requires:
Kijmn = Kjimm =y = = viscosity
0jj = —POij + UOimOjn€;j + U0 Ojm&;j + A0;j0mné&ij

Take MSimSjngij — 6im #= 0ifi = m and 5]71 #* 0 |f] =n -
equivalent to ue,,,,. Similar reasoning for other terms:

O =—Po; +2ug; + A&, O
VvV

18



A and p can be further related if one considers mean
normal stress vs. thermodynamic p.

Opx + Oyy + 0,y = 03 =3P+ (2u+3)V-V
1

2

=  —=0; +|=—u+1 V-V

p 3GII (3/’1 J —_
%K_J

P=mean
normal stress

p—B{—ﬂMJV-\L

Incompressible flow: p=p and absolute pressure is
Indeterminant since there is no equation of state for p.
Equations of motion determineVp.

Compressible flow: p= p and A = bulk viscosity must be
determined; however, it is a very difficult measurement

requiring large VY= T e.g., within shock

WaVeESs.

Stokes Hypothesis also supported kinetic theory
monotonic gas.
_% p

p

A
P

19



2
Ojj = _( p+§ﬂv'\ijé}j +2 gy

Generalization 7 = ﬂd—u for 3D flow.

dy
S e | # | relates shear stress to strain rate
=4 X,
2 ou. 1 ou
o.=—pP——=uV-V+2ul — |=—p+ 2u|—=V-V+—
o2 veou B ops ou-dv s 2|

normal viscous stress

Where the normal viscous stress is the difference between
the extension rate In the Xi direction and average
expansion at a point. Only differences from the average =
1[au v, ow

3\ Ox 6y 0z
incompressible fluids, average =0 i.e., V-V =0.

j generate normal viscous stresses. For

Non-Newtonian fluids:

7, o g, for small strain rates ¢, which works well for
air, water, etc. Newtonian fluids
\ 0

TR TR - Non-Newtonian

non-—linear pisiory effect
Viscoelastic materials

20



Non-Newtonian fluids include:
(1) Polymer molecules with large molecular
weights and form long chains coiled together
In spongy ball shapes that deform under shear.

(2) Emulsions and slurries containing suspended
particles such as blood and water/clay.

Navier Stokes Equations:

DV .
a=p—=—pgk+V.o;
e £9 i

DY _ k—Up+ I [2 2 V-Vé

P = —PY p 0%, ueyj — 3 UV - Vo

Recall p = w(T) p increases with T for gases, decreases
with T for liquids, but if it is assumed that p = constant:

21



DV n 2 2 0
Y ——pak=Vp+ulV¥vV-2_—21yv.v
,0 Dt J P { o 3(’3Xj _:l

For incompressible flow v-v =0

p= pgk-Vp  +avV
Dt e
—Vp where p=p+yz
piezometric pressure
Foru=20
DV - :
Pop =PI k-Vp Euler Equation

NS equations for p, p constant

DV . )
—=-Vp+ VYV

P{%—\f +\L°V\4 =-Vp+uv*V

oV 1_. Y7,
{E +V - V\i} = —;Vp WV v= P kinematic viscosity/
diffusion coefficient

Non-linear 2" order PDE, as is the case for p, x not constant.

Combine with v-v for 4 equations for 4 unknowns v, p
and can be, albeit difficult, solved subject to initial and
boundary conditions for vV, p att =to and on all
boundaries 1.e. “well posed” IBVP.

22



Application of differential momentum equation:

1. NS valid both laminar and turbulent flow; however,
many orders of magnitude difference in temporal
and spatial resolution, i.e., turbulent flow requires
very small time and spatial scales.

Us
2. Laminar flow Regit = 73 about 2000
Re > Regit  Instability
3. Turbulent flow Reansition > 10 or 20 Reégrit

Random motion superimposed on mean coherent
structures.

Cascade: energy from large scale dissipates at
smallest scales due to viscosity.
Kolmogorov hypothesis for smallest scales

4. No exact solutions for turbulent flow: RANS, DES,
LES, DNS (all CFD)

23



5. 80 exact solutions for simple laminar flows are
mostly linear Vv-wv =0. Topics of exact analytical

solutions:
|. Couette (wall/shear-driven) steady flows
a. Channel flows
b. Cylindrical flows.
[1. Poiseuille (pressure-driven) steady flows
a. Channel flows
b. Duct flows
[11. Combined Couette and Poiseuille steady flows
V. Gravity and free-surface steady flows
V. Unsteady flows
V1. Suction and injection flows
VII. Wind-driven (Ekman) flows
VIII.  Similarity solutions

6. Also, many exact solutions for low Re linearized
creeping motion Stokes flows and high Re nonlinear
BL approximations.

7. Can also use CFD for non-simple laminar flows.

8. AFD or CFD requires well posed IBVP; therefore,
exact solutions are useful for setup of IBVP,
physics, and verification CFD since modeling errors
yield Usm = 0 and only errors are numerical errors
Usn, 1.€., assume analytical solution = truth, called
analytical benchmark.
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The Stream Function
Powerful tool for 2-D flow in which V is obtained by
differentiation of a scalar v which automatically satisfies
the continuity equation.

Note for 2D flow
va_(aw dv du Jdw Jdv 6u>_00
~\dy 0z'0z o0x’'dx dy (0,0, @)
Continuity: u, +v, =0
say: u=y, and v=-y,

then: ?{w!,) + g{—w_‘_ )=y, —w, =0 by definition!
ox 0Oy

V=yi-y,j
curlV = f:'(az = —IEVEW (mz =V, —U, =Y, —Y, = —V:y;)

NS equation for unsteady constant property flow:

v
po+ p(V-V)V = -V(p +yz) + uv?v

Taking the curl gives:

)4
p(an—;>+pV><(K-V)K=MV2(V><K) (D

For the unsteady term:

v av (V V) dw
'D<X6t) pa L) =P

25



Recall vector identity:

zx(wz)%wz)—@-w

Such that:
(v Py =39(F2) -V x(TxV) @)

Taking the curl of (2), recalling that the curl of the gradient of a
scalar equal zero and using V X V = w, gives:
Vx{(Z-VV}=-Vx (¥ xw)=Vx(axV) 3

And using Eq. (3) into Eq. (1) gives:

dw
po HPVx(@xV)=uVe  (4)

Recall vector identity:
Vx(axb)=a(V-b)+(b-V)a—b(V-a)-(a-Vb

Such that:

Vx (@xV) =w@FV]+({ V- VD) - (@ VY

And Eq. (4) becomes (vorticity transport equation):

0
po= ol V- (0 V)] =2 @

The second term in brackets in Eqg. (4) represents vortex

stretching and it is exactly zero for 2D flow, since the velocity

and vorticity vector are orthogonal, i.e., w - V= w, %:0.

26



The resulting equation is (2D vorticity transport equation):

0
p==+p|(V- Vo] = a0 (5)

Recall:
u= wy v =1y

w=VxV=ko,=-kV?
Such that Eqg. (5) becomes:

0(—kV? - -
2T o[y W) kg)] = u(-Rv)

And writing (V - V) by components gives:

9 (—kV? ] 0 - -
p T p|(ug + v0) (-RV)| = uv2(-kv2y) (@

Substituting the definition of stream function in Eq. (6) for u and
V gives:

V2 [ 8 o 0 B
5 (532 W) ‘%@(VZ"’)] Nl

This represents a single scalar equation, but 4" order!

boundary conditions (4 required):

atinfinity: u= =U v=-y =0 U =3 —
ty Wy o W ., C:z:'
onbody: u=v=0= v,uy =V, \

T——
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Irrotational Flow

Vzw =0 2ndorderlinear Laplace equation
on SOO 1/ =Uooy+const.

on SB . W =const,

Y and ¢ are orthogonal.
do = ¢de+¢ydy = udx+vdy

dy = 1//de+ wydy = —vdx+udy

. dy u -1
l.e. — = =
dXl4 = const v dy
dXly, = const
,_ (aginy T Gomenn)
ey K Ghraemnta,
Cotews w0k /////%M___%\

.-----. -
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Geometric Interpretation of y

Besides its importance mathematically  also has
Important geometric significance.

w = constant = streamline
Recall definition of a streamline:

<

x dr =0 dr = dxi +dyj

d

v
udy —vdx =0
comparewith dy = z//xdx + a//ydy = —vdx + udy

= |g

l.e. dw =0 alongastreamline
Or y =constant along a streamline and curves of constant

v are the flow streamlines. If we know v (X, y) then we
can plot = constant curves to show streamlines.
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Physical Interpretation
dQ =V.ndA

:(f%//— jaa—l)/:)(%f—% J)xdsx1
=y, dy +y,dx
=dy

o g?ﬂ._m

(dA = flow area ds x 1 with 2D unit tangent
and normal vectors)

AS v ESh TN

EXY)
n -
ds = ANt Agl-
A ~
G hnd = 2a-&a
AR = AS x

i.e., change in dy is volume flux and across streamline dQ — O.

2 2
Q1—>2 — I\iﬂdA :j d l// :(//2 — l//l

Consider flow between two streamlines: = % p=-2




/_,wiit}’/

Flow —=———

T,
)

£

(a) (b)

1.e., proportional to streamline spacing.
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Pressure Distribution in Irrotational Flow; Bernoulli
Equation

Navier-Stokes for constant property incompressible flow:
pa=-V(p) - pgk +uV*V =-V(p+yz)+uV*y

p[aa_\tiﬂi.v\i}:—V(p+7/z)+u[V(V-\L)—V><(VX\i)]

Viscous term=0 for p=constant and ®»=0, i.e., potential flow
solutions also solutions NS under such conditions! But cannot
satisfy no slip condition and suffers from D'Alembert's paradox
that drag = 0.

In fluid dynamics, d'Alembert's paradox (or the hydrodynamic paradox) is a contradiction
reached in 1752 by French mathematician Jean le Rond d'Alembert. D'Alembert proved that —
for incompressible and inviscid potential flow — the drag force is zero on a body moving with
constant velocity relative to the fluid. Zero drag is in direct contradiction to the observation of
substantial drag on bodies moving relative to fluids, such as air and water, especially at high
velocities corresponding with high Reynolds numbers. It is a particular example of the
reversibility paradox.

1. Additionally, assuming inviscid flow: u=0 and using vector

identity

V-V =9 -V-Vx(VxV)

V-V =-vwW-V-V 1%
% t (% VWV -V x (VX Z))]=—V(p + yz) Euler Equation
VA AV - ,
E+V{E +;+gz}_\ixg Ve=V-V ( % 0)
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http://en.wikipedia.org/wiki/D'Alembert's_paradox

2. Additionally, assuming steady flow: % =0
VB=V xw
2
B = v + P + gz
yo
Consider:

VB perpendicular B= constant

V x@=VB perpendicular V and o

Therefore, B=constant contains streamlines and vortex
lines:

_ 7 P .
B= 5 ;Jf & =constant along streamlines

and vortex lines.

p #* T o o e 4 / £
424 220100 iy oy _ ey A B N
LY N e
. X -"".: i 3. o ™
M‘ oy riren
J,r;{ ? e _)l:{
i -, R
LY
5
,C'” s
: o i Y i Yoo
5 - & {Qz " fama b L \TI'T
-~ s b
-~
rd
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3. Additionally assuming irrotational flow: ©=0
VB =0 B= constant (everywhere same constant)
V 2
2

+—+0z=B

X o

4. Unsteady, inviscid, incompressible, and irrotational flow:
u=0, p=constant, ®=0, i.e., potential flow

V?=Vgp -V

\% 8¢+V¢-V¢+£+ gz =0
ot 2 Jo,

6¢+V¢-V¢+£+ gz = B(t)

ot 2 Jo,
B(t)= time dependent constant
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Alternate derivation using stream line coordinates:
. h

= local radius
of curvature
along streamline

V=v(s,t)e +v.e =v(s,1)e,

n-n

pa| pa|
~ 0 . 0
V=e —+e
oS on
DV oV ov or  _ov. . oe o, . oe
a=——=—+V-VIl=—+v —=[—e¢ +v,—/— |+ e +v —]
Dr ot ot os ot ot os os
és A
> To 1% order &, changes by
de 5 .
LN d 9% along i for increments
——2¢&,ds ds
086, ds ds = RdO
é; +—ds

ds

In a space increment ds, the tangent unit vector é; is transformed into
é + %ds and its direction changes by d6. The vector connecting the

two can be obtained using the triangle rule, and its magnitude is equal to
d@, pointing in the —¢,, direction. Alternatively, this can be written as:

90 .
—Eends.
Therefore:
ae 00 p
s=28 —eé.,ds
_ 65 S 9gs "
l.e.,
aés_ 69A_ 1 90 1
s os " R™ | &R

Where g—i represents the curvature k of the trajectory, or
equivalently 1/R.

35



A

€s

dae 69 ) it
——¢&
) 98, ot "
é; + ot dt

Similarly, in a time increment dt, the tangent unit vector é; is
transformed into é; +%dt and its direction changes by dé.

The vector connecting the two can be obtained using the triangle
rule, and its magnitude is equal to df8, pointing in the —é,

direction. Alternatively, this can be written as: — % é,dt.
Therefore:

., 08 \ \
€ +Edt = & —Eendt
l.e.,
dé; 00,
ot ot

Consequently, the acceleration vector can be expressed
as:

ov ov. . a8 v o,

a=[—+v, e, +[-v, —— e
-

s 5 B n
ot Os ot R

—E’; =local a, 1n direction of flow

ov o6

o "“s§=local a, normal to flow

ov

v, ?; =convective a; due to convergence/divergence

of streamlines
2
v

R normal a, due to streamline curvature
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Euler Equation
pa==V(p+yz)

Steady flow s equation:

1.e., B=constant along streamline
Steady flow n equation:

~. 2 -
ov c

L-——(p+72)
R on

vj p .
_,[ Ed n+ » + &2 =constant across streamline

Larger speed/density or smaller R require larger pressure
gradient or elevation gradient normal to streamline.

Highlights that the Bernoulli equation can also be
obtained by integration of the Euler equation along a
streamline.
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Energy Equation:

B = E = energy
B = e = dE/dm = energy per unit mass

Integral Form (fixed CV):

dE 0 .
—= | —(ep)dV + |epV-ndA =Q-W
™ CIV at( P) CIS pV-n Q
rateof change rate of outflux \
Ein CV E acrossCS Rate work
Rate of Rate of heat done by CV
change E added CV
N l , ]
e=u+ EV + gz = internal + KE + PE
Q = conduction + convection + radiation
W = W, + Wp + W
pump/turbine  Pressure viscous
dW, =(pndA)-vV - pressure force x velocity
W, = [ p(V.-n)dA
CS
dW, =-zdA'V - viscous force x velocity
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.. 0
Q-W, -W, = ja(ep)dwcjs(w p/p) PV -ndA

Ccv

For our purposes, we are interested in steady flow with
one inlet and outlet. Also W, ~ 0 in most cases; since, V
= ( at solid surface; on inlet and outlet t, ~ O since its
perpendicular to flow; or for V #0 and Tstreamiine ~ O If
outside BL.

Q-W, = j (0+%V2+gz+ p/pjp\i-gdA

inlet &outlet

Assume parallel flow with p/p+9z and U constant over
Pip¥os

\

= constant i.e.,
hydrostatic pressure
variation

Q-W,=(i+p/p+gz) [ pondArl [ VAV-n)da

inlet &outlet inlet &outlet

inlet and outlet.

Q=W =(a+ p/ o+ gz, () -5 [V, 0A,

(U-I— p/p+gz out (mout)+_j out dA\)ut

out

Define kinetic energy correction factor.
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2

3
a:ij Vlda o ij?u.g)dA:aVavem
AA Vave 2A 2

Laminar flow: u =U{1—(%) j

Vave:O.5 ﬂ — 4/3 OCZZ

Turbulent flow: u= Uo(l— %)

C(1+ m)?’(2+m)3
41+ 3m)(2+3m)
m=1/7 a=1.058 as with 5, a~1 for
turbulent flow
Q W, V. V.

———=U+plp+gz+a—=2%),, —(U+p/p+oz+a-—=2%),
m m 2 2

Letin=1, out =2,V = Va, and divide by g

Pr Q1 ., p2 Az

—+—V hy=—+—V. + hy + h

pg+Zg 1-I.-21+ P pg+Zg 5 + Zy ¢ L
W, W, W,

=h—h,

g gm gm
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Where h: extracts and h, adds energy

1 Q
h = a (U, —u,) _m—g = head loss
h. = thermal energy (other terms represent mechanical energy

m=pAV, = pAV,

Assuming no heat transfer mechanical energy converted
to thermal energy through viscosity and cannot be
recovered; therefore, it is referred to as head loss > 0,
which can be shown from 2" law of thermodynamics.

1D energy equation can be considered as modified
Bernoulli equation for hy, ht, and hy.
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Application of 1D Energy equation fully developed pipe
flow without hy or ht.

Recall for horizontal pipe flow using continuity and

R dp\ - d 2T
momentum: t,, = E(—d_i), e, — 22 = 2w

2T,y

Similarly, for non-horizontal pipe: — ;—x (p+yz) ==*

Using energy equation, L =dx and p = p + yz.

az _ X2
Vi ==2y2
1 2

_ P1—D2 . _ L[ d
=B —z) = |- p@+y)| V=2

pg

L dp L (2T ap
h; = pg( dx) pg( ) (If < 0 flow moves from left to right)

Where t,, = %fpVazve

2
hy=hs=f D ;;e Darcy-Weisbach Equation (valid for laminar or turbulent flow)

Where hf IS the friction loss

- 4UV,
Also recall for laminar flow that 7, = £ ave
_ 5% _ 32 g4 Re,
pvave pRVave

Re, =V, D/v

32ulV,,
7/D2 oC Vave exact solution friction loss for laminar pipe flow!

h =
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Note:

Po = Poiseuille number = fRe = 64 = pure constant, which
Is the case for all laminar flows regardless duct cross
section but with different constant depending on cross

section: SINCe, Twoc Vave
For turbulent flow,  Recit~ 2000 (2x10°), Retrans ~ 3000

f=f (Re, k/D) Re = VaeD/v, k = roughness
twand h Vg,

Pipe with minor losses,
V2
h =K-—
29

h. = hs + 2l where
K =loss coefficient

hm = “so called” minor losses, e.g., entrance/exit,
expansion/contraction, bends, elbows, tees, other
fitting, and valves.
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Differential Form of Energy Equation:

- | = (ep)+ V- (epv) g =Q-w

o v

c_ X |

| |
AN V.(pV) + pV.Ve = be - (ae+vv)
Pt T TP TPLVET P L = P g T YE

=0

The RHS can be expressed through surface integrals:

Q — q-ndA q = —kVT heat flux
cs™ f = f; = surface forces

w=1|[ f- VdA per unit area acting on CS.
cs™

And the surface integrals can be converted into volume integrals
using Gauss’ theorem:

d
J q-QdA=jqinidA=j V-qdA = —q; dV
cs— CcS cv T cv 0%;

;_f-sz=j no;u; dA = f ™ — (oy;u;) dV
cS CS cv [

Where:
0 d
V- (oyu) = o, (oiju) = —ax]_ (u;04)

Which enables expressing the energy equation as:

dE

” fc e 2 (ep) + 7+ (ep)| av

0 gidv - f — (oyju;) av
= — of
cv aXI ql v xl l] ]
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And in the limit as the CV goes to 0, i.e., for a material volume the

differential form becomes:

9,
5. (eP) + V- (epV) =V-q -V (oyw)
For the LHS:

1 1
e=0+=-V?+gz=0G+=V°—g-r
Vg Vi-gr

Dt 9'pe- 9% |4779

~

De . :
Ppi = Q—-—W)/vV=V-q—-V-(o,u;)

All the terms in this
equation have

. . N
dimensions [—2] or
mes

equivalently [%]

B (Dﬁ_I_VDV V)
U\ Dt pt <%
De
dt

G=-V-q=V-(kVT)
i = =0 (o) =~ (way) =~V (V- 0,) -

DV
p(5-9)
using NS
V- f = scalar

V-0, = vector (decreases 2" order tensor by one)
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Fourier’s Law Heat Conduction

aui
Y ax]'




a ( ) aO'l'j + aui
ox; - Y $ 0x; 7 0x;
Tolt<al f Deformation Increase of
work o work_w/o a KE since
s?rface lost to internal contributes
orce energy. fluid a

First term for w

Where:
v o=y (Gervow) =2 sy e = v
2o L\ G TR VL) T T L Dt Dt
Therefore
DV
—V (Vv O'U)__P(VE_K Q)
And
B (VDV v ) aul
W="P\" Dt g Gljax]
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Substitute equation for g and w

q-w=—V~(kVT)+p(V% -g)+0i-%

t = Jax]
Du DV

-r(Ge =L 9)

O-ij = _p6l] + Tij

p—=—V- (kVD)+0;; — e
bt 0x; &j =5 (ui;+u)

Second term on right hand side
aui

aui _ ( 5 aui _ V.V
O"-u a_x,- =T —Dp ij) ax]_ = Tjj ax]_ p
From continuity
Dp 1Dp D (p
VYV =05V === -o|5:(2)]
Dt p Dt - 1Dth b 1
5 5 —PED—l)t—PP?(/S)
p pDp
—pV.V=£—p=—p—(B)+—p "Dt pDt
— pDt Dt \p Dt
Therefore 2(1) __1ar
aui _ aui D (p) n Dp Dtip p? dt
%i dx; — i dx; th p Dt
Such that
D ou; D p\ Dp
= —V-(kVT . (_) -
P Dt (V)_I_T”axj Ppc\p) " Dt
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Rearranging equation and substituting dissipation
. ou;
function® =17;; — >0
Y ax]'

D
P Dt

D
<ﬁ+B>:—V~(kVT)+—p+CD
P Dt

N—————

Consider energy equation in form:

Da
P ="V (VD —pV.V+ @

And compare with mechanical energy equation derived

by multiplying u; X NS:

)

1
D(?uiz) _ v+ a(uiaij) + V.V
P pg-V 0%, pv-V
Rate of Total rate Rate of work
work done of work due to volume
by body done o;; expansion;
force g converts
— mechanical
energy to
internal
energy and
viceversa

Rate of
viscous
dissipation

@ > 0 loss mechanical energy = gain internal energy due to

deformation of the fluid element
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Summary GDE for compressible non-constant property
fluid flow
%)

- %
Continuity: — +V-(P¥)=0

Momentum: p% =pg — Vp + V.0;;

O'ij = ZMEU + sz5ll

~

g = gk

Energy pD:] Drt)+v (kVT)+ @

Primary variables: p,V, T

Auxiliary relations: =p (p,T)
(equations of state) (p T)

(p,T)
(p,T)

N e
I
N e

Restrictive Assumptions:
1) Continuum
2) Newtonian fluids
3) Thermodynamic equilibrium

4) g=- gk
5) heat conduction follows Fourier’s law.

6) no internal heat sources.

For incompressible constant property fluid flow
49



di=c, dT Cv, i, k, p ~ constant

pch:kVZT +O

Dt

For static fluid or V small

T
oC ot =kVT heat conduction equation (also valid for solids)

p

Summary GDE for incompressible constant property fluid
ﬂOW (CV ~ Cp)

VV=0
DV A

Poe = PIK=VP VY “elliptic”

£C, %I =kVT +@ where ¢ = 7, 24

Continuity and momentum uncoupled from energy;
therefore, solve separately and use solution post facto to

get T.

For compressible flow, p solved from continuity equation,
T from energy equation, and p = (p, T) from equation of
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state (e.g., 1deal gas law). For incompressible flow, p =
constant and T uncoupled from continuity and momentum
equations, the latter of which contains Vp such that
reference p is arbitrary and specified post facto (i.e., for
Incompressible flow, there is no connection between p
and p). The connection is between Vp and vV =0, I.e., a
solution for p requires V-V =0.

NS:
0us _
axi_
ow  dw\__%p 0%
P\ac " Yox) ~ "ox " Max?
V-(NS):
. [2% . — _v(P 2
V- [Z+voww = V(p)+vV v|
514
V-(—_—VVZV)+V-(V-VV)=—V2(B)
ot = - = p
(i—vvz)v-v+v-(v-vv)=—v2(3)
ot = - = P
vy = 2
— —_”fax]
d aui aujaul d d i
V- (V-V/V) = — | = —Z -  —
-vy) axl-<”f ax,> ox; 9%, " g, 0x;
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Poisson equation determines pressure up to additive
constant.
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Approximate Models:

1) Stokes Flow

For low Re:$<< 1, V-W~0
| 24

. Linear, “elliptic”
\% \i - O Most exact solutions NS; and for steady
oV 1 , L »  flow superposition, elemental solutions,
E_ =——Vp+WV and separation of variables

yo

V-(NS)=V’p=0

2) Boundary Layer Equations

For high Re >> 1 and attached boundary layers or fully
developed free shear flows (wakes, jets, mixing layers),

0 0
. — << —, p =0, and for free shear flow px = 0.
v<<U " << o p, P

u+v =0
U, +uu, +vu, =—p, +vU, non-linear, “parabolic”
p, =0

-p,=U,+UU_

Many exact solutions; similarity methods
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3) Inviscid Flow

op
—+V.(pV)=0
TV (oY)

DV : : " L
pﬁng—Vp Euler Equation, nonlinear, " hyperbolic
pB—Tz%+V-(kVT) 0.V, T unknowns and p.h,k = f(p,T)

4) Inviscid, Incompressible, Irrotational

VXV =0-V=Vp
V.V=0-V?p =0 linear elliptic

| Euler Equation = Bernoulli Equation:
P +§V2 + pgz = const

Many elegant solutions: Laplace equation using
superposition elementary solutions, separation of
variables, complex variables for 2D, and Boundary

Element methods.
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Couette Shear Flows: 1-D shear flow between surfaces of
like geometry (parallel plates or rotating cylinders).

Steady Incompressible Flow Between Parallel Plates:
Combined Couette and Poiseuille Flow. IBVP: geometry,
condltlons domain/coordinate system, GDE, and IC/BC)

aA
| - nY L TeT, »-U I’ons«-—mla
S |8t an | n  hrule), TeTU) | ) v ensbek
X
- JJ# ‘% e VA ‘;k LAY A A s 7
3&&\14\& w =D ) T , -T‘_-Tg

7-V=0

Uy +v,+w, =0
u, = 0 1.e., fully developed flow

DV A
P o= VRHHVY a—u+uux+vuy+\/\/uZ:O
ot
0=-p, +uu,
oT
DT —+UuT, +VT +wWT =0
—=kVT +O X y Z
ﬂ:p Dt @t
D = T”Z . _:u(ul] +u]l)aul
ul2uZ + 2vy + 2w?
+ Wy +uy)? + Wy + 1,)% + (uy +wy)?]
= pu?
0=KT + pu;

(Note inertia terms vanish identically and p 1s absent from
equations)
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Non-dimensional equations, but drop *

—

u =u/U T*=I_:|r_° y =y/h
u=0
Uyy S—Zﬁx=—B = constant

LE L]

" K(T,-T)
%/—J
PrEc

B.C. y=1 u=1 T=1
y=-1 u=0 T=0

(1)
(2)

3)

(1) is consistent with 1-D flow assumption. Simple
form of (2) and (3) allow for solution to be

obtained by double integration.

+1

82,

1
s 2,0

u P y=y/h

1(1+y)+§8(1—y2) "o

)

' -1

NN )

- Parabolic flow
Linear flow due to px Note: linear
duetoU superposition since
V-W =0

2

. h?
Solution depends on B=—ﬂ—u B. (P, =0p/ox+0z/0x)

B < 0 (favorable)

P, is opposite to U

B<-05 backflow occurs near lower wall
IB| >>1 flow approaches parabolic profile.
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Pressure gradient effect

r N

1 PrE s\ Prg_B?
T=-1+y)+ °a y')+—=—(1-y")
2 6 12
Pure T rises due to Dominant term
conduction viscous dissipation forB>
+1 =30l 1 _!__ﬁ
. 0 5 % mnz '----....\0‘5
¥ o / — — ¥* 0 _ /
0 0.5 1 1.5 2 o 4 8 12 16 20
r r
Lo} &)
FIGURE 3-3
T distribu or flow ween @
o o o ke o Pl B 12 0
Note: usually PrE. is quite small
Substance PrE. dissipation
Air 0.001 very small
Br=PrE
Water 0.02 ]
= Brinkman #
Crude oil 20 large

Prandtl number Pr = uCy/k = momentum diffusivity/thermal diffusivity

Eckert number Ec = U?/Cy(T1-To) = advection transport/heat dissipation

potential

Br# = heat produced viscous dissipation/heat transported molecular

conduction
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Shear Stress

1) P.=0 i.e., pure Couette Flow
hZ

B=——p, =0
l,l,pr

Using solution shown previously
u =§(1+y )+§B(1—y )=E(1+y )
Calculating wall shear stress

u 1 y
) (1+5)
2(g) _1

Yy 2
(%)
_ du _uu
oAyl T 2n
iy
Cf Tw 2h 2
%pUZ %pUZ pUh
Since Rey, = pUh/u
1
C —_ -
! Reh

Po = CfRe = 1. Better for non-accelerating flows
since p 1S not in equations and Po = pure constant
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2) U=0 I.e. pure Poiseuille Flow

.1 \ ) ) _
u :EB(l_y 2) Uy* Z—By uy :—BLZJ y VaveZU
h
-h . 2u
Where B=—p =—"=
LU
1h? y 2 " 4
Dimensional form ”Z‘Esz[l_(A) j Q=Judy=_hu,_
—u “ 3
a:g:gumax :Vave
oh 3

Remember that for laminar pipe flow, V,,,, = %umax

BU
=—u——  upper

T, =) "

:+,u% lower

<u lam.

_BU 2u 3y N
L N 21 oc pu turb.
C, = Lo _bp_ 6 or P=C,Re, =6
;puz puh  Re,

Remember that for laminar pipe flow, ¢, = - and ¢, = £,

1.e., except for numerical constants same functionality as
for circular pipe.
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Rate of heat transfer at the walls:

—=£{T—T)+ Hi + = upper, - = lower
on 1 o—zu4h pper,

a
oy

W

y+th

Heat transfer coefficient:

= qW
° (Tl _To)

For Br > 2, both upper & lower walls must be cooled to
maintain T1 and To
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Conservation of Angular Momentum: moment form of
momentum equation (not new conservation law!)

B=H,= f[x\idm = angular momentum of system about inertial

sys

coordinate system O (extensive property)

g = =X V' (Intensive property)

dt j(rxV)pdV+j(r><V)p

Rate of
change of

angular
momentum

=>M, = vector sum all external moments applied
on CV due to both Fgand Fs, including reaction forces.

For uniform flow across discrete inlet/outlet:
[ ExV)pVrndd=3(rxV), 1o —X(rxV), 1

M,= [z-dAxr +j(png)x[+MR

o J/ o
-V '
surface forcemoment  body force moment

M . = moment of reaction forces
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@ Absolute ovtlet
velocity

]1_.-.- Vo= Vui— Ruwi

EXAMPLE 3.15

Figure 3.14 shows a lawn sprinkler arm viewed from above. The arm rotates about O at
constant angular velocity . The volume flux entering the arm at @ is ., and the fluid is
oV incompressible. There is a retarding torque at (3, due to bearing friction, of amount —T k.
! / Retarding Find an expression for the rotation @ in terms of the arm and flow properties.

Hig .

torgue Ty —

Fig. 3.14 View from above of a
r single arm of a rotating lawn
/) sprinkler,

Inlet velocity

Q
VD= —— k
Apipe

Take inertial frame 0 as fixed to earth such that CS
moving at Vs= -Ro 1

Vo=V,
Retarding torque due to Pipe

bearing friction \

> M, = 0= =Tok = (1, X Vy)ritoue = (13 % Vi )ity

My =M, = PQ T,k = R(V, — Rw)(-K) pQ

\Y T
“= EO_ pQORZ —interestingly, even for To=0, wmax=Vo/R

(limited by ratio such that large R small o; large Vo large o)
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Differential Equation of Conservation of Angqular
Momentum:

Apply CV form for fixed CV:
2 M, = m_g (¥ xV) edN *\ (LN ) ¥ en ANy

— r.Y>
L i i x
~ X %

S (Jﬂ,a\l = C‘.ﬁ-wx-vr\-"uk
T, e
B —
AL
3 P By S
&,

@, = angular acceleration
| = moment of inertia
dx dy

_agy X ax g dy g dy
lo, = ady2+bdy2 dx2 ddx2
o, =(Txy—Z'X)dXdy
Since I——z[dxdy +dydx] 'dedy[dx + dy? ]
E[dx2 +dy2}a')Z =Ty —Tyx

lim T =T

dx—0,dy—0 = xy yx !

l.e. 7, =7, stress tensor is symmetric (stresses
themselves cause no rotation)

similarly, z,=7,, 7,=1,
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