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Chapters 1 Preliminary Concepts & 2 Fundamental Equations of Compressible 

Viscous Flow 

 

(3) Fundamental Equations of Compressible Viscous Flow 

 

 

𝐝𝐦

𝐝𝐭
= 𝟎 

𝑭 = 𝐦𝒂 =
𝐝(𝐦𝒗)

𝐝𝐭
 

m 
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𝐝

𝐝𝐭
(𝐦,𝐦𝑽, 𝐄) = 𝐑𝐇𝐒 
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Reynolds Transport Theorem (RTT) 

 

Need relationship between ( )sysB
dt

d
 and changes in 

 ==
CVCV

ddmcvB  . 

 
 

1 = time rate of change of B in CV =  =
CV

d
dt

d

dt

cvdB
  

 

2 = net outflux of B from CV across CS = R

CS

V n dA   

As with Q and 𝑚̇, ∆𝐵̇ flux though A per unit time is:  

𝑑𝑄 = 𝑉𝑅 . 𝑛 𝑑𝐴 

𝑑𝑚̇ = 𝜌𝑉𝑅 . 𝑛 𝑑𝐴 

𝑑∆𝐵̇ = 𝛽𝜌𝑉𝑅 . 𝑛 𝑑𝐴 
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Therefore: 
 

dAnVd
dt

d

dt

dB
R

CSCV

SYS +=    

General form RTT for moving deforming control volume. 

 

Specific CV cases depending on 𝑉𝑠(𝑥, 𝑡).  

 

1) Deforming CV: 𝑉∗ = 𝑉∗(𝑥, 𝑡) 

(a) 𝑉𝑠 = 𝑉𝑠(𝑥, 𝑡) non-uniform/accelerating velocity 

(b) 𝑉𝑠 = 𝑉𝑠(𝑥) uniform/constant velocity (steady 

moving) 

(c) ∫ 𝑉𝑠(𝑥, 𝑡) ∙ 𝑛𝑑𝐴 = 0𝐶𝑆
 as a whole at rest 

(stationary) 

 

2) Non deforming CV: 𝑉∗ ≠ 𝑉∗(𝑥) 

(a) 𝑉𝑠 = 𝑉𝑠(𝑡) accelerating velocity 

(b) 𝑉𝑠 = constant velocity, i.e., relative inertial 

coordinates (steady moving) 

(c) 𝑉𝑠 = 0 at rest (stationary) 

 

3) Material volume: 𝑉𝑠 = 𝑉, 𝑉𝑟 = 0 and RTT takes the 

form: 
𝑑𝐵𝑆𝑌𝑆
𝑠𝑡

=
𝑑

𝑑𝑡
∫ 𝛽(𝑥, 𝑡)𝜌(𝑥, 𝑡)𝑑𝑉
𝐶𝑉

 

 

𝑉𝑟 = 𝑉 − 𝑉𝑠  
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Which can be written as: 

 
𝑑

𝑑𝑡
∫ 𝛽(𝑥, 𝑡)𝜌(𝑥, 𝑡)𝑑𝑉
𝑀𝑉

= ∫
𝜕(𝛽𝜌)

𝜕𝑡
𝑑𝑉

𝑀𝑉

+∫ 𝛽𝜌𝑉 ∙ 𝑛𝑑𝐴
𝑀𝑆

 

 

Using Green’s theorem: ∫ ∇ ∙ 𝑏𝑑𝑉
𝑉

= ∫ 𝑏 ∙ 𝑛𝑑𝐴
𝑆

 

 
𝑑

𝑑𝑡
∫ 𝛽(𝑥, 𝑡)𝜌(𝑥, 𝑡)𝑑𝑉
𝑀𝑉

= ∫ [
𝜕(𝛽𝜌)

𝜕𝑡
+ ∇ ∙ (𝛽𝜌)] 𝑑𝑉

𝑀𝑉

 

 

And taking the limit for 𝑑𝑉 → 0 provides GDE: 

 
𝑑

𝑑𝑡
∫ 𝛽𝜌𝑑𝑉 =
𝑉(𝑡)

𝜕(𝛽𝜌)

𝜕𝑡
+ ∇ ∙ (𝛽𝜌𝑢) 
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Continuity Equation: 

 

B = m = mass of system 

β = 1 
𝑑𝑚

𝑑𝑡
= 0 by definition, system = fixed amount of mass 

 

1)  Most general integral form for deforming 

accelerating/steady moving/stationary CV depending 

on definition 𝑉𝑠(𝑥, 𝑡) (a) – (c) page 4: 
𝑑𝑚

𝑑𝑡
= 0 =

𝑑

𝑑𝑡
∫ 𝜌(𝑥, 𝑡)𝑑𝑉
𝐶𝑉

+∫ 𝜌(𝑥, 𝑡) (𝑉(𝑥, 𝑡) − 𝑉𝑠(𝑥, 𝑡))⏟            
𝑉𝑟

∙ 𝑛𝑑𝐴
𝐶𝑆

 

−
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉
𝐶𝑉

= ∫ 𝜌𝑉𝑟 ∙ 𝑛𝑑𝐴
𝐶𝑆

 

Rate of decrease of mass in CV = net rate of mass outflow across CS 

 
 

2)  Most general integral form for non-deforming 𝑉𝑠 ≠

𝑉𝑠(𝑥) accelerating/steady moving/stationary CV, (a)-

(c) page 4: 
 

∫
𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
𝑑𝑉

𝐶𝑉

+∫ 𝜌(𝑥, 𝑡) (𝑉(𝑥, 𝑡) − 𝑉𝑠(𝑡))⏟          
𝑉𝑟

∙ 𝑛𝑑𝐴
𝐶𝑆

= 0 
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3) Incompressible flow→  𝜌(𝑥, 𝑡) = constant. 

(a) Deforming CV accelerating/steady moving/stationary, 

i.e., conservation of volume: 

−
𝑑

𝑑𝑡
∫ 𝑑𝑉
𝐶𝑉

= ∫ (𝑉(𝑥, 𝑡) − 𝑉𝑠(𝑥, 𝑡))⏟            
𝑉𝑟

∙ 𝑛𝑑𝐴
𝐶𝑆

 

(b) Non-deforming CV accelerating/steady 

moving/stationary: 

∫ (𝑉(𝑥, 𝑡) − 𝑉𝑠(𝑡))⏟          
𝑉𝑟

∙ 𝑛𝑑𝐴
𝐶𝑆

= 0 

(c) Steady flow, i.e., 
𝜕

𝜕𝑡
= 0. Two possibilities for 𝑉𝑠: 𝑉𝑠 =

0, 𝑉𝑠 =constant. The RTT takes the form: 

∫ (𝑉(𝑥) − 𝑉𝑠)⏟        
𝑉𝑟

∙ 𝑛𝑑𝐴
𝐶𝑆

= 0 

(d) Flow over discrete inlet/outlet → the flux term can be 

expressed as summation: 

∑𝑄𝐶𝑆𝑖 = 0 𝑜𝑟 ∑(𝑄)𝐶𝑆𝑖𝑛 =∑(𝑄)𝐶𝑆𝑜𝑢𝑡 

 

Non-uniform flow: 

𝑄𝐶𝑆𝑖 = ∫ (𝑉(𝑥) − 𝑉𝑠)⏟        
𝑉𝑟

∙ 𝑛𝑑𝐴
𝐶𝑆

= (𝑉𝑎𝑣𝐴)𝐶𝑆𝑖  

𝑉𝑎𝑣 =
1

𝐴
∫ (𝑉(𝑥) − 𝑉𝑠)⏟        

𝑉𝑟

∙ 𝑛𝑑𝐴
𝐶𝑆

 

Uniform flow: 

𝑄𝐶𝑆𝑖 = (𝑉(𝑥) − 𝑉𝑠) ∙ 𝑛𝐴 
For fixed CV, 𝑉𝑠 = 0: 

𝑄𝐶𝑆𝑖 = 𝑉(𝑥) ∙ 𝑛𝐴 

For inlets: 

𝑉𝑟 ∙ 𝑛 < 0 

For outlets: 

𝑉𝑟 ∙ 𝑛 > 0 
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Differential Form:  
𝑑𝑚

𝑑𝑡
= 0 = ∫[

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑉)] 𝑑∀

𝐶𝑉

 

𝛽 = 1 

( ) 0=+



V

t



       

0=++






VV

t
 

0=+ V
Dt

D



 

0

1 1

d d
M dM d d

D D

Dt Dt


  








=   =  +  =  − =




= −



 0

11

1
=







==−




+




+





+

  



unitper
changeofrate

Dt

D

Dt

D

z

w

y

v

x

u

V

unitper

changeofrate

Dt

D









  

Called the continuity equation since the implication is that 

ρ and V are continuous functions of x. 

  

Incompressible Fluid:  ρ = constant 

0

0

=



+




+





=

z

w

y

v

x

u

V

 

𝑚 = 𝜌∀ 𝑑𝑚 
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Momentum Equation: 

B = mV = momentum, β = V 

 

Integral Form: 
( )

3
1 2

R

CV CS

d MV d
V d V V n dA F

dt dt
 =  +  =    

F  =  vector sum of all forces acting on CV 

 = FB + Fs 

FB =  Body forces, which act on entire CV of fluid due to 

external force field such as gravity or electrostatic or 

magnetic forces.  Force per unit volume. 

Fs =  Surface forces, which act on entire CS due to normal 

(pressure and viscous stress) and tangential (viscous 

stresses) stresses.  Force per unit area. 

 

When CS cuts through solids Fs may also include FR = 

reaction forces, e.g., reaction force required to hold nozzle 

or bend when CS cuts through bolts holding nozzle/bend 

in place. 

 1 = rate of change of momentum in CV 

       2 = rate of outflux of momentum across CS 

 3 = vector sum of all body forces acting on entire CV 

and  surface forces acting on entire CS. 

 

Many interesting applications of CV form of momentum 

equation: vanes, nozzles, bends, rockets, forces on bodies, 

water hammer, etc. 

Differential Form: 

𝑑(𝑚𝑉)

𝑑𝑡
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( ) ( )
CV

V V V d F
t

 
 

+    =  
  

Where ( )
V

V V
t t t


 

  
= +

  
 

and ˆˆ ˆV V VV ui V vjV wkV    = = + +  is a tensor. 

( ) ( ) ( ) ( ) ( )V V VV uV vV wV
x y z

    
  

 =  = + +
  

 

VVVV +=  )(  

 

( )
CV

V
V V V V d F

t t


 

      
+  + +   =         

  

 

Since 
V DV

V V
t Dt


+  =


 

 = Fd
Dt

VD

CV

  

= f
Dt

VD


 per elemental fluid volume 

sb
ffa +=  

 

b
f  = body force per unit volume 

s
f  = surface force per unit volume 

 

= 0, continuity 
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Body forces are due to external fields such as gravity or 

magnetic fields.  Here we only consider a gravitational 

field; that is, 
dxdydzgFdF

gravbody = =  

 

and  
ˆg gk= −   for    

i.e. 
ˆ

body
f gk= −  

Surface Forces are due to the stresses that act on the sides 

of the control surfaces. 

ijijij
p  +−=  

 

















+−

+−

+−

=

zzzyzx

yzyyyx

xzxyxx

p

p

p







 

 

 

 

 

Symmetry condition from requirement that for elemental 

fluid volume, stresses themselves cause no rotation. 

 

As shown before, for p alone it is not the stresses 

themselves that cause a net force but their gradients. 

 

s pf f f= +
 

Viscous stress Normal pressure 

z 

g 

Symmetric ij ji =  

 

2nd order tensor 
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Recall pf p= −  based on 1st order TS.  f  is more 

complex since 
ij

  is a 2nd order tensor, but similarly as for 

p, the force is due to stress gradients and are derived 

based on 1st order TS. 
^ ^ ^

^ ^ ^

^ ^ ^

x xx xy xz

y yx yy yz

z zx zy zz

i j k

i j k

i j k

   

   

   

= + +

= + +

= + +

   

 

 

 

 

 

 

 
     and similarly, for z face 

             zx
zx zxdz dydz

z


 

 
+ − 

 
 

                                 and 𝑗̂ and 𝑘̂ directions 

𝐹𝑠 = [
𝜕

𝜕𝑥
(𝜎𝑥𝑥) +

𝜕

𝜕𝑦
(𝜎𝑦𝑥) +

𝜕

𝜕𝑧
(𝜎𝑧𝑥)] 𝑑𝑥𝑑𝑦𝑑𝑧 𝑖̂ 

+[
𝜕

𝜕𝑥
(𝜎𝑥𝑦) +

𝜕

𝜕𝑦
(𝜎𝑦𝑦) +

𝜕

𝜕𝑧
(𝜎𝑧𝑦)] 𝑑𝑥𝑑𝑦𝑑𝑧 𝑗̂ 

+[
𝜕

𝜕𝑥
(𝜎𝑥𝑧) +

𝜕

𝜕𝑦
(𝜎𝑦𝑧) +

𝜕

𝜕𝑧
(𝜎𝑧𝑧)] 𝑑𝑥𝑑𝑦𝑑𝑧 𝑘̂ 

 

z 

Resultant 

stress  

on each face 

x 

y 

dydzdx
x

xx

xx 











+


  

yx

yx dy dxdz
y




 
+ 

 
 

yx dxdz  

xx dydz  
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( ) ( ) ( )s x y zF dxdydz
x y z

  
   

= + + 
   

 

 

Divided by the volume: 

( ) ( ) ( )s x y zf
x y z

  
  

= + +
    

s ij ij ji

j i

f
x x

  
 

=  = =
   

Since ij= ji 
 

Putting together the above results, 

ˆ
ij

DV
a gk

Dt
   = = − +   

 

 

Note: 

 = delta  

 = nabla (Hebrew “nebel” means lyre or ancient harp 

used by David to entertain King Saul in praise of God) 

∇𝑓 = vector 

f = scalar 

ij  = vector (decreases 2nd order tensor by one) 

f  = tensor 

V = vector 

body force 

due to 

gravity 

Inertial force 
surface force = p + viscous terms 

(Due to stress gradients) 

𝑓𝑠 = (𝑓𝑠1, 𝑓𝑠2 , 𝑓𝑠3) = 𝑓𝑠𝑖 = ∇ ∙ 𝜎𝑖𝑗 =
𝜕

𝜕𝑥𝑗
𝜎𝑖𝑗

=
𝜕

𝜕𝑥𝑖
𝜎𝑖𝑗 

According to Einstein 

summation notation, 

repeated indices are 

implicitly summed 

over: 

𝜎𝑖𝑖 = 𝜎11 + 𝜎22 + 𝜎33 
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Next, we need to relate the stresses σij to the fluid motion, 

i.e., the velocity field.  To this end, we examine the 

relative motion between two neighboring fluid particles. 

 

  

 

 

 

@ B: V dV V V dr+ = +    1st order Taylor Series 

 

 
 

𝑑𝑉 = (uB-uA, vB-vA, wB-wA) 
 

x y z

x y z ij j

x y z

u u u dx

dV V dr v v v dy e dx

w w w dz

   
   

=   = =   
     

 

 

 

 

B 

relative motion 
deformation rate 

tensor = 
ij

e  

dr  

𝑑𝑉 = 𝑑𝑉𝑖 = (𝑑𝑉1, 𝑑𝑉2, 𝑑𝑉3) 

A (u,v,w) = V 
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𝑒𝑖𝑗 =
𝜕𝑢𝑖
𝜕𝑥𝑗

=
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)

⏟        
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑎𝑟𝑡
𝜀𝑖𝑗=𝜀𝑗𝑖

+
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
)

⏟        
𝑎𝑛𝑡𝑖−𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑎𝑟𝑡
𝜔𝑖𝑗=−𝜔𝑗𝑖

= 𝜀𝑖𝑗 +𝜔𝑖𝑗 

 

1 1
0 ( ) ( )

2 2

1 1
( ) 0 ( )

2 2

1 1
( ) ( ) 0

2 2

y x z x

ij x y z y

x z y z

u v u w

v u v w rigid body rotation
of fluid element

w u w v









 
 
 
 

− − 
 
 = − − =
 
 
 
 

− − 
 
  

  

 

where = rotation about x axis 

 = rotation about y axis 

ς= rotation about z axis 

 

Note that the components of ij are related to the vorticity 

vector defined by: 

 
ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )

2 22

y z z x x y x y zV w v i u w j v u k i j k   

 

=  = − + − + − = + +
 

= 2  angular velocity of fluid element 
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1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

ij

x y x z x

x y y z y

x z y z z

rate of strain tensor

u u v u w

v u v v w

w u w v w

 =

 
+ + 

 
 = + +
 
 
 + +
  

 

 

x y zu v w V+ + =  = elongation (or volumetric dilatation)  

of fluid element 
1 D

Dt


=


 

)(
2

1
xy

vu +  = distortion wrt (x,y) plane 

)(
2

1
xz

wu +  = distortion wrt (x,z) plane 

)(
2

1
yz

wv +  = distortion wrt (y,z) plane 

 

Thus, general motion consists of: 

 

1) pure translation described by V  

2) rigid-body rotation described by ω 

3) volumetric dilatation described by V  

4) distortion in shape described by ij  i j 
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It is now necessary to make certain postulates concerning 

the relationship between the fluid stress tensor (σij) and 

rate-of-deformation tensor (eij).  These postulates are 

based on physical reasoning and experimental 

observations and have been verified experimentally even 

for extreme conditions. For a Newtonian fluid: 

 

1) When the fluid is at rest the stress is hydrostatic and 

the pressure is the thermodynamic pressure 

 

2) Since there is no shearing action in rigid body 

rotation, it causes no shear stress. 

 

3) ij is linearly related to ij and only depends on ij. 

 

4) There is no preferred direction in the fluid, so that 

the fluid properties are point functions (condition of 

isotropy). 
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Using statements 1-3 
 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝑘𝑖𝑗𝑚𝑛𝜀𝑚𝑛        𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

 

kijmn = 4th order tensor with 81 components (3x3x3x3) 

such that each stress is linearly related to all nine 

components of εmn. 
 

However, statement (4) requires that the fluid has no 

directional preference, i.e., σij is independent of rotation 

of coordinate system, which means kijmn is an isotropic 

tensor = even order tensor made up of products of δij. 
 

ijmn ij mn im jn in jmk      = + +  
 

scalars=),,(   
 

Lastly, the symmetry condition σij = σji requires: 

 

kijmn = kjimn → γ = μ = viscosity 

 
𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇𝛿𝑖𝑚𝛿𝑗𝑛𝜀𝑖𝑗 + 𝜇𝛿𝑖𝑛𝛿𝑗𝑚𝜀𝑖𝑗 + 𝜆𝛿𝑖𝑗𝛿𝑚𝑛𝜀𝑖𝑗  

 
Take 𝜇𝛿𝑖𝑚𝛿𝑗𝑛𝜀𝑖𝑗 → 𝛿𝑖𝑚 ≠ 0 if 𝑖 = 𝑚 and 𝛿𝑗𝑛 ≠ 0 if 𝑗 = 𝑛 → 

equivalent to 𝜇𝜀𝑚𝑛. Similar reasoning for other terms: 

 

2ij ij ij mm ijp

V

     = − + +


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λ and μ can be further related if one considers mean 

normal stress vs. thermodynamic p. 

 

3 (2 3 )ii p V  = − + +   
1 2

3 3
iip V

p mean
normal stress

  
 

= − + +   
 

=

 

 
2

3
p p V 

 
− = +   

 
 

 

Incompressible flow: pp =   and absolute pressure is 

indeterminant since there is no equation of state for p.  

Equations of motion determine p . 

 

Compressible flow:  pp   and λ = bulk viscosity must be 

determined; however, it is a very difficult measurement 

requiring large 
1 1D D

V
Dt Dt






 = − =


, e.g., within shock 

waves. 

 

Stokes Hypothesis also supported kinetic theory 

monotonic gas. 

pp =

−= 
3

2
 

 

𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧 = 
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2
2

3
ij ij ijp V   

 
= − +   + 

   

 

Generalization 
dy

du
 =   for 3D flow.  

 

ji
ij

j i

uu

x x
 

 
= +    

 ji   relates shear stress to strain rate 

 

2 1
2 2

3 3

i i
ii

i i

u u
p V p V

x x

normal viscous stress

   
    

= − −  + = − + −  +   
      

 

Where the normal viscous stress is the difference between 

the extension rate in the xi direction and average 

expansion at a point.  Only differences from the average = 













+




+





z

w

y

v

x

u

3

1
 generate normal viscous stresses.  For 

incompressible fluids, average = 0 i.e., 0V = . 
 

Non-Newtonian fluids: 

ijij
   for small strain rates 



 , which works well for 

air, water, etc. Newtonian fluids 

 
n

ij ij ij
t

non linear history effect

  


 +


−
  Non-Newtonian 

      Viscoelastic materials 
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Non-Newtonian fluids include: 

 

(1) Polymer molecules with large molecular 

weights and form long chains coiled together 

in spongy ball shapes that deform under shear. 

  

(2) Emulsions and slurries containing suspended 

particles such as blood and water/clay. 

 

Navier Stokes Equations: 

 

ˆ
ij

DV
a gk

Dt
   = = − +   

 

𝜌
𝐷𝑉

𝐷𝑡
= −𝜌𝑔𝑘̂ − 𝛻𝑝 +

𝜕

𝜕𝑥𝑗
[2𝜇𝜀𝑖𝑗 −

2

3
𝜇𝛻 ⋅ 𝑉𝛿𝑖𝑗] 

 

Recall μ = μ(T) μ increases with T for gases, decreases 

with T for liquids, but if it is assumed that μ = constant: 

 
2ˆ 2
3

ij

j j

DV
gk p V

Dt x x
    

 
= − − + − 

   

 
2

2 22
ji i

ij i

j j j i j j

uu u
u V

x x x x x x


   
= + = =  =         
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𝜌
𝐷𝑉

𝐷𝑡

2 2ˆ
3 j

g k p V V
x

 
 

= − −  +  −   
  

 

For incompressible flow 0V =  

 
2ˆ

ˆ ˆ

DV
gk p V

Dt
p where p p z

piezometric pressure

  



= − − + 

− = +
 

For μ = 0 

ˆDV
g k p

Dt
 = − −    Euler Equation 

 

NS equations for ρ, μ constant 

 

2ˆ
DV

p V
Dt

 = − +   

 

2ˆ
V

V V p V
t

 
 

+  = − +   
 

21
ˆ

V
V V p V

t




 
+  = −  +   

    





=  kinematic viscosity/ 

                                                diffusion coefficient 

 
Non-linear 2nd order PDE, as is the case for ρ, μ not constant. 

 

Combine with V  for 4 equations for 4 unknowns V , p 

and can be, albeit difficult, solved subject to initial and 

boundary conditions for V , p at t = t0 and on all 

boundaries i.e. “well posed” IBVP. 
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Application of differential momentum equation: 

 

1. NS valid both laminar and turbulent flow; however, 

many orders of magnitude difference in temporal 

and spatial resolution, i.e., turbulent flow requires 

very small time and spatial scales. 

  

2. Laminar flow Recrit = 
U


  about 2000 

Re > Recrit    instability 

 

3. Turbulent flow Retransition > 10 or 20 Recrit 

 

Random motion superimposed on mean coherent 

structures. 

 

Cascade: energy from large scale dissipates at 

smallest scales due to viscosity. 

Kolmogorov hypothesis for smallest scales 

 

4. No exact solutions for turbulent flow: RANS, DES, 

LES, DNS (all CFD) 
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5. 80 exact solutions for simple laminar flows are 

mostly linear 0V V = .  Topics of exact analytical 

solutions:  

I. Couette (wall/shear-driven) steady flows  

a. Channel flows  

b. Cylindrical flows.  

II. Poiseuille (pressure-driven) steady flows  

a. Channel flows  

b. Duct flows  

III. Combined Couette and Poiseuille steady flows  

IV. Gravity and free-surface steady flows  

V. Unsteady flows  

VI. Suction and injection flows  

VII. Wind-driven (Ekman) flows  

VIII. Similarity solutions  

 

6. Also, many exact solutions for low Re linearized 

creeping motion Stokes flows and high Re nonlinear 

BL approximations. 

 

7. Can also use CFD for non-simple laminar flows. 

  

8. AFD or CFD requires well posed IBVP; therefore, 

exact solutions are useful for setup of IBVP, 

physics, and verification CFD since modeling errors 

yield USM = 0 and only errors are numerical errors 

USN, i.e., assume analytical solution = truth, called 

analytical benchmark. 
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The Stream Function 

Powerful tool for 2-D flow in which V is obtained by 

differentiation of a scalar   which automatically satisfies 

the continuity equation. 

 
Note for 2D flow  

∇ × 𝑉 = (
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
,
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
 ) = (0, 0, 𝜔𝑧) 

 

  

 

NS equation for unsteady constant property flow: 

𝜌
𝜕𝑉

𝜕𝑡
+ 𝜌(𝑉 ∙ ∇)𝑉 = −∇(𝑝 + 𝛾𝑧) + 𝜇∇2𝑉 

 

Taking the curl gives: 

𝜌 (∇ ×
𝜕𝑉

𝜕𝑡
) + 𝜌∇ × (𝑉 ∙ ∇)𝑉 = 𝜇∇2(∇ × 𝑉)      (1) 

 

For the unsteady term: 

𝜌 (∇ ×
𝜕𝑉

𝜕𝑡
) = 𝜌

𝜕

𝜕𝑡
(∇ × 𝑉) = 𝜌

𝜕𝜔

𝜕𝑡
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Recall vector identity: 

𝑉 × (∇ × 𝑉) =
1

2
∇(𝑉2) − (𝑉 ∙ ∇)𝑉 

 

Such that: 

(𝑉 ∙ ∇)𝑉 =
1

2
∇(𝑉2) − 𝑉 × (∇ × 𝑉)     (2) 

 

Taking the curl of (2), recalling that the curl of the gradient of a 

scalar equal zero and using ∇ × 𝑉 = 𝜔, gives: 

∇ × {(𝑉 ∙ ∇)𝑉} = −∇ × (𝑉 × 𝜔) = ∇ × (𝜔 × 𝑉)     (3) 

 

And using Eq. (3) into Eq. (1) gives: 

𝜌
𝜕𝜔

𝜕𝑡
+ 𝜌∇ × (𝜔 × 𝑉) = 𝜇∇2𝜔      (4) 

 

Recall vector identity: 

∇ × (𝑎 × 𝑏) = 𝑎(∇ ∙ 𝑏) + (𝑏 ∙ ∇)𝑎 − 𝑏(∇ ∙ 𝑎) − (𝑎 ∙ ∇)𝑏 

 

Such that: 

∇ × (𝜔 × 𝑉) = 𝜔(∇ ∙ 𝑉) + (𝑉 ∙ ∇)𝜔 − 𝑉(∇ ∙ 𝜔) − (𝜔 ∙ ∇)𝑉 

 

And Eq. (4) becomes (vorticity transport equation): 

𝜌
𝜕𝜔

𝜕𝑡
+ 𝜌[(𝑉 ∙ ∇)𝜔 − (𝜔 ∙ ∇)𝑉] = 𝜇∇2𝜔     (4) 

 

The second term in brackets in Eq. (4) represents vortex 

stretching and it is exactly zero for 2D flow, since the velocity 

and vorticity vector are orthogonal, i.e., 𝜔 ∙ ∇= 𝜔𝑧
𝜕

𝜕𝑧
=0. 
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The resulting equation is (2D vorticity transport equation): 

𝜌
𝜕𝜔

𝜕𝑡
+ 𝜌[(𝑉 ∙ ∇)𝜔] = 𝜇∇2𝜔     (5) 

 

Recall: 
𝑢 =  𝜓𝑦    𝑣 = 𝜓𝑥 

 

𝜔 = ∇ × 𝑉 = 𝑘̂𝜔𝑧 = −𝑘̂∇
2𝜓 

 

Such that Eq. (5) becomes: 

𝜌
𝜕(−𝑘̂∇2𝜓)

𝜕𝑡
+ 𝜌[(𝑉 ∙ ∇)(−𝑘̂∇2𝜓)] = 𝜇∇2(−𝑘̂∇2𝜓) 

 

And writing (𝑉 ∙ ∇) by components gives: 

𝜌
𝜕(−𝑘̂∇2𝜓)

𝜕𝑡
+ 𝜌 [(𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) (−𝑘̂∇2𝜓)] = 𝜇∇2(−𝑘̂∇2𝜓)     (6) 

 

Substituting the definition of stream function in Eq. (6) for u and 

v gives: 

𝜕∇2𝜓

𝜕𝑡
+ [
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
(∇2𝜓) −

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
(∇2𝜓)] = 𝜈∇4𝜓 

 

This represents a single scalar equation, but 4th order! 

 

boundary conditions (4 required):  

 

xy
vu

x
vU

y
u





−====

=−=


==

0       :bodyon 

0           :infinityat 
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Irrotational Flow  

 

.      :on  

.      :on  

equation Laplacelinear order  2nd      02

const
B

S

constyUS

=

+


=


=







 

 

yx
v

xy
u





=−=

==

 

 

Ψ and φ are orthogonal. 
 

udyvdxdy
y

dx
x

d

vdyudxdy
y

dx
x

d

+−=+=

+=+=





 

i.e. 

constdx

dyv

u

constdx

dy

=

−
=−=

=





1
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Geometric Interpretation of   

 

Besides its importance mathematically   also has 

important geometric significance. 

 

 = constant = streamline 

Recall definition of a streamline: 

 

streamline a along     0   i.e.

 with    compare

0

ˆˆ           0V

=

+−=+=

=−

=

+==





d

udyvdxdy
y

dx
x

d

vdxudy

v

dy

u

dx

jdyidxdrdr

 

 

Or  =constant along a streamline and curves of constant 

  are the flow streamlines. If we know  (x, y) then we 

can plot  = constant curves to show streamlines. 
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𝑢 =
𝜕𝜓

𝜕𝑦
,  𝑣 = −

𝜕𝜓

𝜕𝑥
 

Physical Interpretation 
.

ˆ ˆ ˆ ˆ      ( ).( ) 1

      

      

y x

dQ V ndA

dy dx
i j i j ds

y x ds ds

dy dx

d

 

 



=

 
= − −  

 

= +

=

 

 

i.e., change in d  is volume flux and across streamline 0=dQ . 

12

2

1

2

1

21
.  −=== →

ddAnVQ  

Consider flow between two streamlines: 

 

 

( 𝑑𝐴 = 𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎  𝑑𝑠 × 1  with 2D unit tangent 

and normal vectors) 
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𝑑𝑄 = 𝑑𝜓 = 𝑉 ∙ 𝑛𝑑𝐴 = 𝑉𝑛𝑑𝐴 

𝑉𝑛 =
𝑑𝜓

𝑑𝐴
∝
1

𝑑𝐴
 

i.e., proportional to streamline spacing. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑉 
𝑛 

𝜓𝑦 > 0 → 𝑢 > 0 

 
𝜓𝑦 < 0 → 𝑢 < 0 
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Pressure Distribution in Irrotational Flow; Bernoulli 

Equation 

Navier-Stokes for constant property incompressible flow: 

 

2 2ˆ( ) ( )

( ) ( ) ( )

a p gk V p z V

V
V V p z V V

t

    

  

= − − +  = − + + 

 
+  = − + +    −      

 

Viscous term=0 for =constant and =0, i.e., potential flow 

solutions also solutions NS under such conditions!  But cannot 

satisfy no slip condition and suffers from D'Alembert's paradox 

that drag = 0. 

 
In fluid dynamics, d'Alembert's paradox (or the hydrodynamic paradox) is a contradiction 

reached in 1752 by French mathematician Jean le Rond d'Alembert. D'Alembert proved that – 

for incompressible and inviscid potential flow – the drag force is zero on a body moving with 

constant velocity relative to the fluid. Zero drag is in direct contradiction to the observation of 

substantial drag on bodies moving relative to fluids, such as air and water, especially at high 

velocities corresponding with high Reynolds numbers. It is a particular example of the 

reversibility paradox. 

 

1. Additionally, assuming inviscid flow: =0 and using vector 

identity 

 𝑉 ⋅ ∇𝑉 =
1

2
∇𝑉 ⋅ 𝑉 − 𝑉 × (∇ × 𝑉) 

 

𝜌 [
𝜕𝑉

𝜕𝑡
+ (

1

2
∇𝑉 ⋅ 𝑉 − 𝑉 × (∇ × 𝑉))]=−∇(p + γz) Euler Equation 

 

VVVVgz
pV

t

V
==








+++



 2

2

2


    (𝜔 ≠ 0) 

 

 

http://en.wikipedia.org/wiki/D'Alembert's_paradox
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2. Additionally, assuming steady flow: 0=




t
 

gz
pV

B

VB

++=

=




2

2
 

Consider:  

 

B perpendicular B= constant 

 

V B =     perpendicular V and   
 

Therefore, B=constant contains streamlines and vortex 

lines: 
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3. Additionally assuming irrotational flow: =0 
 

0=B  B= constant (everywhere same constant) 

 
2

2

V p
gz B


+ + =

 

 
4. Unsteady, inviscid, incompressible, and irrotational flow: 

=0, =constant, =0, i.e., potential flow 

 

)(
2

0
2

2

tBgz
p

t

gz
p

t

V

V

=++


+




=







++


+






=

=













 

B(t)= time dependent constant 



35 

 

 

 
In a space increment 𝑑𝑠, the tangent unit vector 𝑒̂𝑠 is transformed into 

𝑒̂𝑠 +
𝜕𝑒̂𝑠

𝜕𝑠
𝑑𝑠 and its direction changes by 𝑑𝜃. The vector connecting the 

two can be obtained using the triangle rule, and its magnitude is equal to 

𝑑𝜃, pointing in the −𝑒̂𝑛 direction. Alternatively, this can be written as: 

−
𝜕𝜃

𝜕𝑠
𝑒̂𝑛𝑑𝑠. 

Therefore: 

𝑒̂𝑠 +
𝜕𝑒̂𝑠
𝜕𝑠
𝑑𝑠 = 𝑒̂𝑠 −

𝜕𝜃

𝜕𝑠
𝑒̂𝑛𝑑𝑠 

i.e., 
𝜕𝑒̂𝑠
𝜕𝑠

= −
𝜕𝜃

𝜕𝑠
𝑒̂𝑛 = −

1

𝑅
𝑒̂𝑛 

Where 
𝜕𝜃

𝜕𝑠
 represents the curvature 𝑘 of the trajectory, or 

equivalently 1/𝑅. 

𝑑𝜃 

𝑒̂𝑠 

𝑒̂𝑠 +
𝜕𝑒̂𝑠
𝜕𝑠
𝑑𝑠 

−
𝜕𝜃

𝜕𝑠
𝑒̂𝑛𝑑𝑠 

𝑅 = local radius 

of curvature 

along streamline 

To 1st order 𝑒̂𝑠 changes by 
𝜕𝑒̂𝑠

𝜕𝑠
 along 𝜓 for increments 

𝑑𝑠 = 𝑅𝑑𝜃 

𝜕𝜃

𝜕𝑠
=
1

𝑅
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Similarly, in a time increment 𝑑𝑡, the tangent unit vector 𝑒̂𝑠 is 

transformed into 𝑒̂𝑠 +
𝜕𝑒̂𝑠

𝜕𝑡
𝑑𝑡  and its direction changes by 𝑑𝜃 . 

The vector connecting the two can be obtained using the triangle 

rule, and its magnitude is equal to 𝑑𝜃 , pointing in the −𝑒̂𝑛 

direction. Alternatively, this can be written as: −
𝜕𝜃

𝜕𝑡
𝑒̂𝑛𝑑𝑡. 

Therefore: 

𝑒̂𝑠 +
𝜕𝑒̂𝑠
𝜕𝑡
𝑑𝑡 = 𝑒̂𝑠 −

𝜕𝜃

𝜕𝑡
𝑒̂𝑛𝑑𝑡 

i.e., 
𝜕𝑒̂𝑠
𝜕𝑡

= −
𝜕𝜃

𝜕𝑡
𝑒̂𝑛 

Consequently, the acceleration vector can be expressed 

as: 

 

𝑒̂𝑠 +
𝜕𝑒̂𝑠
𝜕𝑡
𝑑𝑡 

𝑒̂𝑠 

−
𝜕𝜃

𝜕𝑡
𝑒̂𝑛𝑑𝑡 

𝑑𝜃 
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Larger speed/density or smaller R require larger pressure 

gradient or elevation gradient normal to streamline. 

 

Highlights that the Bernoulli equation can also be 

obtained by integration of the Euler equation along a 

streamline. 
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Energy Equation: 

 

B = E = energy 

β = e = dE/dm = energy per unit mass 

 

  

Integral Form (fixed CV): 

 

( )
CV CS

dE
e d e V n dA Q W

dt t

rateof change rateof outflux
E in CV E acrossCS

 


=  +  = −
   

 

 

 

=++= gzvue 2

2

1^

 internal + KE + PE 

 

Q  = conduction + convection + radiation 

 

 
/

shaft pW W W W

pressure viscouspump turbine

= + +
 

 

 ( )pdW p ndA V=    - pressure force  velocity 

 

 ( )p

CS

W p V n dA=   

 

vdW dA V= −     - viscous force  velocity 

Rate of 

change E 

Rate of heat 

added CV 

Rate work 

done by CV 
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v

CS

W V dA= −   

 

( )( ) /s

CV CS

Q W W e d e p V n dA
t

   


− − =  + + 
   

 

For our purposes, we are interested in steady flow with 

one inlet and outlet.  Also 𝑊̇𝑣 ≈ 0 in most cases; since, V 

= 0 at solid surface; on inlet and outlet τn ~ 0 since its 

perpendicular to flow; or for V  0 and τstreamline ~ 0 if 

outside BL. 

2

&

1
ˆ /

2
S

inlet outlet

Q W u V gz p V n dA 
 

− = + + +  
 

  

 

Assume parallel flow with /p gz +  and û constant over 

inlet and outlet. 

 

( ) 2

& &

ˆ / ( )
2

S

inlet outlet inlet outlet

Q W u p gz V n dA V V n dA


 − = + +  +    

 

( ) 3ˆ / ( )
2

S in in inin

in

Q W u p gz m V dA


− = + + − −   

( ) 3ˆ / ( )
2

out out outout

out

u p gz m V dA


+ + + +   

Define kinetic energy correction factor. 

 

= constant i.e., 

hydrostatic pressure 

variation 
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3
2

21
( )

2 2

ave

aveA A

VV
dA V V n dA m

A V


 

• 
= →  = 

 
   

 

Laminar flow: 















−=

2

0
1

R

r
Uu  

 

  Vave=0.5  β = 4/3  α=2 

 

Turbulent flow: 
m

R

r
Uu 








−= 1

0
 

 

  
( ) ( )

3 3
1 2

4(1 3 )(2 3 )

m m

m m


+ +
=

+ +
 

 

m=1/7  α=1.058  as with β, α~1 for  

turbulent flow 

 

 
2 2

ˆ ˆ( / ) ( / )
2 2

s ave ave
out in

W V VQ
u p gz u p gz

m m
   − = + + + − + + +  

 

Let in = 1, out = 2, V = Vave, and divide by g 

 
𝑝1
𝜌𝑔
+
𝛼1
2𝑔
𝑉1
2 + 𝑧1 + ℎ𝑝 =

𝑝2
𝜌𝑔
+
𝛼2
2𝑔
𝑉2
2 + 𝑧2 + ℎ𝑡 + ℎ𝐿 

ps t
t p

WW W
h h

gm gm gm
= − = −  
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Where ht extracts and hp adds energy 

 

 2 1

1
( )L

Q
h u u

g mg
= − −  = head loss 

 
 hL = thermal energy (other terms represent mechanical energy 

 

1 1 2 2m AV A V = =  

 

Assuming no heat transfer mechanical energy converted 

to thermal energy through viscosity and cannot be 

recovered; therefore, it is referred to as head loss > 0, 

which can be shown from 2nd law of thermodynamics. 

 

1D energy equation can be considered as modified 

Bernoulli equation for hp, ht, and hL. 
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Application of 1D Energy equation fully developed pipe 

flow without hp or ht. 

 

Recall for horizontal pipe flow using continuity and 

momentum: 𝜏𝑤 =
𝑅

2
(−

𝑑𝑝

𝑑𝑥
), i.e., −

𝑑𝑝

𝑑𝑥
=
2𝜏𝑤

𝑅
 

 

Similarly, for non-horizontal pipe: −
𝑑

𝑑𝑥
(𝑝 + 𝛾𝑧) =

2𝜏𝑤

𝑅
 

 

Using energy equation, 𝐿 = 𝑑𝑥 and 𝑝̂ = 𝑝 + 𝛾𝑧: 

 

ℎ𝐿 =
𝑝1−𝑝2

𝜌𝑔
+ (𝑧1 − 𝑧2) =

𝐿

𝜌𝑔
[−

𝑑

𝑑𝑥
(𝑝 + 𝛾𝑧)]           

𝛼1

2𝑔
𝑉1
2 =

𝛼2

2𝑔
𝑉2
2

 

 

ℎ𝐿 =
𝐿

𝜌𝑔
(−

𝑑𝑝

𝑑𝑥
) =

𝐿

𝜌𝑔
(
2𝜏𝑤

𝑅
)   (If  

𝑑𝑝

𝑑𝑥
< 0 flow moves from left to right) 

 

Where 𝜏𝑤 =
1

8
𝑓𝜌𝑉𝑎𝑣𝑒

2  

 

ℎ𝐿 = ℎ𝑓 = 𝑓
𝐿

𝐷

𝑉𝑎𝑣𝑒
2

2𝑔
    

Where ℎ𝑓 is the friction loss 

Also recall for laminar flow that 𝜏𝑤 =
4𝜇𝑉𝑎𝑣𝑒

𝑅
 

2

8 32
64 / Re

Re /

w
D

ave ave

D ave

f
V RV

V D

 

 



= = =

=
 

 

2

32 ave
L

LV
h

D




=  Vave  exact solution friction loss for laminar pipe flow! 

Darcy-Weisbach Equation (valid for laminar or turbulent flow) 
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Note: 

 

Po = Poiseuille number = fRe = 64 = pure constant, which 

is the case for all laminar flows regardless duct cross 

section but with different constant depending on cross 

section; since, wVave 

 

For turbulent flow, Recrit ~ 2000 (2x103), Retrans ~ 3000 

 

 f=f (Re, k/D)  Re = VaveD/ν, k = roughness 

 

 w and 
2

L aveh V   

 

Pipe with minor losses, 

 hL = hf + Σhm   where 

2

2
m

V
h K

g

K loss coefficient

=

=
 

 

hm = “so called” minor losses, e.g., entrance/exit, 

expansion/contraction, bends, elbows, tees, other 

fitting, and valves. 
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Differential Form of Energy Equation: 

( ) ( )
CV

dE
e e V d Q W

dt t
 

 
 

= +   = − 
  

  

 

𝜌
𝜕𝑒

𝜕𝑡
+ 𝑒

𝜕𝜌

𝜕𝑡
+ 𝑒∇. (𝜌𝑉)

⏟          
=0

+ 𝜌𝑉. ∇𝑒 = 𝜌
𝐷𝑒

𝐷𝑡
= 𝜌 (

𝜕𝑒

𝜕𝑡
+ 𝑉. ∇𝑒) 

 

The RHS can be expressed through surface integrals: 

𝑄̇ = ∫ 𝑞
𝐶𝑆

∙ 𝑛𝑑𝐴 

𝑊̇ = ∫ 𝑓
𝐶𝑆

∙ 𝑉𝑑𝐴 

 

And the surface integrals can be converted into volume integrals 

using Gauss’ theorem: 

∫ 𝑞
𝐶𝑆

∙ 𝑛𝑑𝐴 = ∫ 𝑞𝑖𝑛𝑖
𝐶𝑆

𝑑𝐴 = ∫ ∇ ∙ 𝑞
𝐶𝑉

𝑑𝐴 = ∫
∂

∂𝑥𝑖
𝑞𝑖

𝐶𝑉

𝑑𝑉 

∫ 𝑓
𝐶𝑆

∙ 𝑉𝑑𝐴 = ∫ 𝑛𝑖𝜎𝑖𝑗𝑢𝑗
𝐶𝑆

𝑑𝐴 = ∫
𝜕

𝜕𝑥𝑖
(𝜎𝑖𝑗𝑢𝑗)

𝐶𝑉

𝑑𝑉 

Where: 

∇ ∙ (𝜎𝑖𝑗𝑢𝑗) =
𝜕

𝜕𝑥𝑖
(𝜎𝑖𝑗𝑢𝑗) =

𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜎𝑖𝑗) 

 

Which enables expressing the energy equation as: 

 
𝑑𝐸

𝑑𝑡
= ∫ [

𝜕

𝜕𝑡
(𝑒𝜌) + 𝛻 ⋅ (𝑒𝜌𝑉)]

𝐶𝑉

𝑑∀

= ∫
∂

∂xi
𝑞𝑖

𝐶𝑉

𝑑∀ − ∫
𝜕

𝜕𝑥𝑖
(𝜎𝑖𝑗𝑢𝑗)

𝐶𝑉

𝑑∀ 

𝑞 = −𝑘∇𝑇 heat flux 

𝑓 = 𝑓𝑗 = surface forces 

per unit area acting on CS. 
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And in the limit as the CV goes to 0, i.e., for a material volume the 

differential form becomes: 
 

𝜕

𝜕𝑡
(𝑒𝜌) + 𝛻 ⋅ (𝑒𝜌𝑉) = ∇ ∙ 𝑞 − ∇ ∙ (𝜎𝑖𝑗𝑢𝑗) 

 

For the LHS: 

2 21 1
ˆ ˆ

2 2
e u V gz u V g r= + + = + −   

 

𝐷 (−𝑔 ∙ 𝑟)

𝐷𝑡
= −𝑔 ∙

𝐷𝑟

𝐷𝑡
= −𝑔 ∙ 𝑉 

 
 

𝜌
𝐷𝑒

𝐷𝑡
= (𝑄̇ − 𝑊̇)/∀= ∇ ∙ 𝑞 − ∇ ∙ (𝜎𝑖𝑗𝑢𝑗)

= 𝜌 (
𝐷𝑢̂

𝐷𝑡
+ 𝑉

𝐷𝑉

𝐷𝑡
− 𝑔 ⋅ 𝑉)

⏟              
𝐷𝑒
𝑑𝑡

 

 

( )q q k T= − =        Fourier’s Law Heat Conduction    

 𝑤̇ = −∇ ⋅ (𝑢𝑖𝜎𝑖𝑗) = −
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜎𝑖𝑗) = −𝑉 ⋅ (∇ ⋅ 𝜎𝑖𝑗)⏟    

𝜌(
𝐷𝑉

𝐷𝑡
−𝑔)

𝑢𝑠𝑖𝑛𝑔 𝑁𝑆

− 𝜎𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
 

f = scalar 

ij  = vector (decreases 2nd order tensor by one) 

 

 
 

𝑔 = −𝑔𝑘̂ 

All the terms in this 

equation have 

dimensions [
𝑁

𝑚2𝑠
] or 

equivalently [
𝑘𝑔

𝑚𝑠3
] 
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𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜎𝑖𝑗)         =          𝑢𝑖

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
          +             𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗
    

 

 
 

 

 

 

First term for 𝑤̇ 
 

−𝑉 ⋅ (∇ ⋅ 𝜎𝑖𝑗) = −𝑉 ⋅ 𝜌 (
𝐷𝑉

𝐷𝑡
− 𝑔) = −𝜌 (𝑉 ⋅

𝐷𝑉

𝐷𝑡
− 𝑉 ⋅ 𝑔) 

 

Where:  
 

𝑉 ⋅
𝐷𝑉

𝐷𝑡
= 𝑉 ⋅ (

𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ ∇𝑉) =

𝜕𝑉2

𝜕𝑡
+ 𝑉 ⋅ ∇𝑉2 =

𝐷𝑉2

𝐷𝑡
= 𝑉

𝐷𝑉

𝐷𝑡
 

 

Therefore 

−𝑉 ⋅ (∇ ⋅ 𝜎𝑖𝑗) = −𝜌 (𝑉
𝐷𝑉

𝐷𝑡
− 𝑉 ⋅ 𝑔) 

 

And 

𝑤̇ = −𝜌 (𝑉
𝐷𝑉

𝐷𝑡
− 𝑉 ⋅ 𝑔) − 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

 

 

 

 

 

 

 

Total 

work of 

surface 

force 

Deformation 

work w/o 𝑎 

lost to internal 

energy. 

Increase of 

KE since 

contributes 

fluid 𝑎 
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Substitute equation for 𝑞̇ and 𝑤̇ 

 

𝑞̇ − 𝑤̇ = −∇ ⋅ (𝑘∇T) + 𝜌 (𝑉
𝐷𝑉

𝐷𝑡
− 𝑉 ⋅ 𝑔) + 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝜌 (
𝐷𝑢̂

𝐷𝑡
+ 𝑉

𝐷𝑉

𝐷𝑡
− 𝑉 ⋅ 𝑔)  

 

𝜌
𝐷𝑢̂

𝐷𝑡
= −∇ ⋅ (𝑘∇T)+𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

 

 

Second term on right hand side  

𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= (𝜏𝑖𝑗 − 𝑝𝛿𝑖𝑗)
𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝑝∇ ⋅ V  

From continuity  

 
𝐷𝜌

𝐷𝑡
+ 𝜌∇. 𝑉 = 0 → ∇. 𝑉 = −

1

𝜌

𝐷𝜌

𝐷𝑡
 

 

−𝑝∇. 𝑉 =
𝑝

𝜌

𝐷𝜌

𝐷𝑡
= −𝜌

𝐷

𝐷𝑡
(
𝑝

𝜌
) +

𝐷𝑝

𝐷𝑡
 

Therefore  

𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜌
𝐷

𝐷𝑡
(
𝑝

𝜌
) +

𝐷𝑝

𝐷𝑡
 

Such that 

 

𝜌
𝐷𝑢̂

𝐷𝑡
= −∇ ⋅ (𝑘∇T) + 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜌
𝐷

𝐷𝑡
(
𝑝

𝜌
) +

𝐷𝑝

𝐷𝑡
 

 

 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗  

𝜏𝑖𝑗 = 2𝜇𝜀𝑖𝑗  

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

−𝜌 [
𝐷

𝐷𝑡
(
𝑝

𝜌
)] 

= −𝜌
1

𝜌

𝐷𝑝

𝐷𝑡
− 𝜌𝑝

𝐷

𝐷𝑡
(
1

𝜌
) 

= −
𝐷𝑝

𝐷𝑡
+
𝑝

𝜌

𝐷𝜌

𝐷𝑡
 

 
𝐷

𝐷𝑡
(
1

𝜌
) = −

1

𝜌2
𝑑𝜌

𝑑𝑡
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Rearranging equation and substituting dissipation 

function Φ = 𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
≥ 0 

 

𝜌
𝐷

𝐷𝑡
(𝑢̂ +

𝑝

𝜌
)

⏟    
ℎ=𝑒𝑛𝑡𝑎𝑙𝑝𝑦

= −∇ ⋅ (𝑘∇T) +
𝐷𝑝

𝐷𝑡
+ Φ 

 

Consider energy equation in form: 

 

𝜌
𝐷𝑢̂

𝐷𝑡
= −∇ ⋅ (𝑘∇T) − 𝑝∇. 𝑉 +  Φ 

 

And compare with mechanical energy equation derived 

by multiplying 𝑢𝑖 x NS: 

 

𝜌
𝐷 (
1
2
u𝑖
2)

𝐷𝑡
       =     𝜌𝑔 ∙ 𝑉     +     

𝜕(u𝑖𝜎𝑖𝑗)

𝜕𝑥𝑗
    +        𝑝∇ ∙ 𝑉       −       Φ 

 

 
 

 

 

 

 

 

 Φ ≥ 0 loss mechanical energy = gain internal energy due to 

deformation of the fluid element 

 

Rate of 

work done 

by body 

force 𝑔 

Total rate 

of work 

done 𝜎𝑖𝑗  

Rate of work 

due to volume 

expansion; 

converts 

mechanical 

energy to 

internal 

energy and 

viceversa 

Rate of 

viscous 

dissipation  
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Summary GDE for compressible non-constant property 

fluid flow 

Continuity: ( ) 0V
t





+  =

  

 

Momentum: 𝜌
𝐷𝑉

𝐷𝑡
= 𝜌𝑔 − ∇𝑝 + ∇. 𝜎𝑖𝑗 

 

   𝜎𝑖𝑗 = 2𝜇𝜖𝑖𝑗 + 𝜆∇. 𝑉𝛿𝑖𝑗 

 

𝑔 = −𝑔𝑘̂ 

 

Energy ++= )( Tk
Dt

Dp

Dt

Dh
  

 

Primary variables: p, V, T 

 

Auxiliary relations:  ρ = ρ (p,T)  μ = μ (p,T) 

(equations of state)   h = h (p,T)  k = k (p,T) 

 

Restrictive Assumptions: 

1) Continuum 

2) Newtonian fluids 

3) Thermodynamic equilibrium 

4) 𝑔 = −𝑔𝑘̂ 

5) heat conduction follows Fourier’s law. 

6) no internal heat sources. 

For incompressible constant property fluid flow 
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ˆ

vdu c dT=   cv, μ, k, ρ ~ constant 

 

+= Tk
Dt

DT
c

v

2  

 

For static fluid or V small 

 

Tk
t

T
c

p

2=



  heat conduction equation (also valid for solids) 

 

Summary GDE for incompressible constant property fluid 

flow (cv ~ cp) 

 

0V =   

 

2ˆDV
gk p V

Dt
  = − − +    “elliptic” 

+= Tk
Dt

DT
c

p

2   where 𝛷 = 𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
 

 

Continuity and momentum uncoupled from energy; 

therefore, solve separately and use solution post facto to 

get T. 

 

 

For compressible flow, ρ solved from continuity equation, 

T from energy equation, and p = (ρ, T) from equation of 
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state (e.g., ideal gas law).  For incompressible flow, ρ = 

constant and T uncoupled from continuity and momentum 

equations, the latter of which contains p  such that 

reference p is arbitrary and specified post facto (i.e., for 

incompressible flow, there is no connection between p 

and ρ).  The connection is between p  and 0V = , i.e., a 

solution for p requires 0V = . 

 

NS: 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 

𝜌 (
𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗
) = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗
2  

 

)(NS : 

 

  ∇ ∙ [
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉 = −∇(

𝑝

𝜌
) + 𝜈∇2𝑉] 

∇ ∙ (
𝜕𝑉

𝜕𝑡
− 𝜈∇2𝑉) + ∇ ∙ (𝑉 ∙ ∇𝑉) = −∇2 (

𝑝

𝜌
) 

(
𝜕

𝜕𝑡
− 𝜈∇2) ∇ ∙ 𝑉 + ∇ ∙ (𝑉 ∙ ∇𝑉) = −∇2 (

𝑝

𝜌
) 

𝑉 ∙ ∇𝑉 = 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

 

∇ ∙ (𝑉 ∙ ∇𝑉) =
𝜕

𝜕𝑥𝑖
(𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗
) =

𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝑢𝑗
𝜕

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗
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∇ ∙ (𝑉 ∙ ∇𝑉) =
𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

 

 

(
𝜕

𝜕𝑡
− 𝜈𝛻2)𝛻 ⋅ 𝑉 = −

1

𝜌
𝛻2𝑝 −

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 

 

For 0V = : 
 

 
i

j

j

i

x

u

x

u
p








−= 2  

 

Poisson equation determines pressure up to additive 

constant. 
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Approximate Models: 

 

1) Stokes Flow 
  

 For low Re 1, ~ 0
UL

V V


=    

 

 0V =  
21V

p V
t





= −  + 


 

 
0)( 2 = pNS  

 

2)  Boundary Layer Equations 

 

For high Re >> 1 and attached boundary layers or fully 

developed free shear flows (wakes, jets, mixing layers), 

v<<U, 
yx 







, 0=

y
p , and for free shear flow px = 0.   

 
 0=+

yx
vu  

 ˆ
t x y x yyu uu vu p u+ + = − +  non-linear, “parabolic” 

 

0

ˆ

y

x t x

p

p U UU

=

− = +  

 

Many exact solutions; similarity methods 

 

 

Linear, “elliptic” 

Most exact solutions NS; and for steady 

flow superposition, elemental solutions, 

and separation of variables 
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3)  Inviscid Flow 

 

( ) 0

, ," "

( ) , , , , ( , )

V
t

DV
g p Euler Equation nonlinear hyperbolic

Dt

Dh Dp
k T p V T unknowns and h k f p T

Dt Dt




 

 


+   =



= − 

= +    =

 

4)  Inviscid, Incompressible, Irrotational 

 

∇ × 𝑉 = 0 → 𝑉 = ∇𝜑 

∇. 𝑉 = 0 → ∇2𝜑 = 0   𝑙𝑖𝑛𝑒𝑎𝑟 elliptic 
 

  Euler Equation →  Bernoulli Equation: 

 

2

2
p V gz const


+ + =  

 

Many elegant solutions:  Laplace equation using 

superposition elementary solutions, separation of 

variables, complex variables for 2D, and Boundary 

Element methods. 
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Couette Shear Flows:  1-D shear flow between surfaces of 

like geometry (parallel plates or rotating cylinders). 
 

Steady Incompressible Flow Between Parallel Plates: 

Combined Couette and Poiseuille Flow. IBVP: geometry, 

conditions, domain/coordinate system, GDE, and IC/BC) 

 
𝛻 ⋅ 𝑉 = 0 

𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0 

𝑢𝑥 = 0   i.e., fully developed flow 

 

2ˆ
DV

p V
Dt

 = − +    0=+++



zyx

wuvuuu
t

u
 

ˆ0 x yyp u= − +  

+= Tk
Dt

DT
c

p

2   
0x y z

T
uT vT wT

t


+ + + =

  

                                                               𝛷 = 𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
= 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)

𝜕𝑢𝑖

𝜕𝑥𝑗
 

           𝜇[2𝑢𝑥
2 + 2𝑣𝑦

2 + 2𝑤𝑧
2 

  +(𝑣𝑥 + 𝑢𝑦)
2 + (𝑤𝑦 + 𝑣𝑧)

2 + (𝑢𝑧 +𝑤𝑥)
2] 

  = 𝜇𝑢𝑦
2   

20
yyy

ukT +=  
 

(Note inertia terms vanish identically and ρ is absent from 

equations) 
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Non-dimensional equations, but drop * 
 

Uuu /* =   
01

0*

TT

TT
T

−

−
=  

* /y y h=  

0=
x

u         (1) 

𝑢𝑦𝑦 =
ℎ
2

𝜇𝑈
𝑝̂𝑥 = −𝐵 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    (2) 

 2

01

2

Pr

)(
yyy

u
TTk

U
T

Ec

−
−

=




     (3) 

B.C. y = 1 u = 1 T = 1 

  y = -1 u = 0 T = 0 

(1) is consistent with 1-D flow assumption.  Simple 

form of (2) and (3) allow for solution to be 

obtained by double integration. 

 
21 1

(1 ) (1 )
2 2

u y B y = + + −  y=y/h 

 

 

 

Solution depends on 
2

ˆ
x

h
B p

U
= −  ( ˆ / /xp p x z x=   +   ) 

 B < 0 (favorable)  ˆ
xp  is opposite to U 

 B < -0.5  backflow occurs near lower wall 

 |B| >> 1   flow approaches parabolic profile. 

Linear flow 

due to U 

Parabolic flow 

due to px Note:  linear 

superposition since 

0V V =  
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Pressure gradient effect

2
2 3 4Pr Pr Pr1

(1 ) (1 ) ( ) (1 )
2 8 6 12

c c cE E B E B
T y y y y y= + + − − − + −  

 

 

 

 
 

Note: usually PrEc is quite small 

 
Substance  PrEc  dissipation 

Air   0.001 very small 

Water  0.02      
#

Pr

Brinkman

EBr
c

=

=
 

Crude oil  20  large      

 

Prandtl number Pr = Cp/k = momentum diffusivity/thermal diffusivity 

 

Eckert number Ec = U2/Cp(T1-T0) = advection transport/heat dissipation 

potential 

 

Br# = heat produced viscous dissipation/heat transported molecular 

conduction 

 

Pure 

conduction 

T rises due to 

viscous dissipation 

Dominant term 

for B→ ∞ 
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Shear Stress 

1)  ˆ 0xp =  i.e., pure Couette Flow 

𝐵 = −
ℎ2

𝜇𝑈
𝑝̂𝑥 = 0 

Using solution shown previously 

𝑢∗ =
1

2
(1 + 𝑦∗) +

1

2
𝐵(1 − 𝑦∗2) =

1

2
(1 + 𝑦∗) 

Calculating wall shear stress 
𝑢

𝑈
=
1

2
(1 +

𝑦

ℎ
) 

𝜕 (
𝑢
𝑈)

𝜕 (
𝑦
ℎ
)
=
1

2
 

𝜏𝑤 = 𝜇
𝑑𝑢

𝑑𝑦
]
𝑦=−1

  =
𝜇𝑈

2ℎ
 

𝐶𝑓 =
𝜏𝑤
1
2
𝜌𝑈2

=

𝜇𝑈
2ℎ
1
2
𝜌𝑈2

=
𝜇

𝜌𝑈ℎ
 

Since 𝑅𝑒ℎ = 𝜌𝑈ℎ/𝜇 

𝐶𝑓 =
1

𝑅𝑒ℎ
 

 

P0 = CfRe = 1:  Better for non-accelerating flows 

since ρ is not in equations and P0 = pure constant 
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2)  U = 0 i.e.  pure Poiseuille Flow 

 

* *21
(1 )

2
u B y= −  *

* *

y
u By= −   y

h

BU
u

y 2
−=   uV

ave
=  

 

Where  
max2

ˆ
x

uh
B p

U U

−
= =  

Dimensional form ( )
2 2

max

1
ˆ 1

2
x

h y
u p

h

u



 
= − − 

   
max

3

4
hudyuQ

h

h

==
−

 

 

ave
Vu

h

Q
u ===

max
3

2

2  
Remember that for laminar pipe flow, 𝑉𝑎𝑣𝑒 =

1

2
𝑢𝑚𝑎𝑥 

 

h
u

h

u

h

BU

lower
h

BU

upper
h

BU
u

w

hyyw

3
2

max 





===

+=

−==
=

    

 

6Re
Re

66

2

1 0

2

=====
hf

h

w

f
CPor

hu
U

C







 

Remember that for laminar pipe flow, 𝐶𝑓 =
16

𝑅𝑒𝐷
 and 𝜏𝑤 =

𝜇8𝑉𝑎𝑣𝑒

𝐷
, 

i.e., except for numerical constants same functionality as 

for circular pipe. 

2

.

.

u lam

u turb




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Rate of heat transfer at the walls: 

 
2

1 0( )
2 4

w

y h

T k U
q k T T

y h h





= = − 


  + = upper, - = lower 

 

Heat transfer coefficient: 

 

( )1 0

wq
T T

 =
−  

 

2
1

2 Br
k

h
Nu ==


 

 

For Br > 2, both upper & lower walls must be cooled to 

maintain T1 and T0 
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Conservation of Angular Momentum: moment form of 

momentum equation (not new conservation law!) 

 

0

sys

B H r V dm= =  =  angular momentum of system about inertial 

coordinate system 0 (extensive property) 

 

𝛽 =
𝑑𝐵

𝑑𝑀
= 𝑟 × 𝑉   (Intensive property) 

 
𝑑𝐻0
𝑑𝑡⏟

Rate of
change of
angular

momentum

=
𝑑

𝑑𝑡
∫(𝑟 × 𝑉)𝜌 𝑑∀

𝐶𝑉

+ ∫(𝑟 × 𝑉)𝜌 𝑉𝑅 . 𝑛 𝑑𝐴

𝐶𝑆
 

 

            == 0M   vector sum all external moments applied 

on CV due to both FB and FS, including reaction forces. 
 

For uniform flow across discrete inlet/outlet: 

 

∫ (𝑟 × 𝑉)𝜌 𝑉𝑅 . 𝑛 𝑑𝐴𝐶𝑆
= ∑(𝑟 × 𝑉)

𝑜𝑢𝑡
𝑚̇𝑜𝑢𝑡 − ∑(𝑟 × 𝑉)𝑖𝑛𝑚̇𝑖𝑛  

 
( ) R

CVCS

MrdgrdAM

momentforcebodymomentforcesurface

+ + =


0  

 
=RM   moment of reaction forces 
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Take inertial frame 0 as fixed to earth such that CS 

moving at Vs= -Rω 𝑖̂ 
𝑉 = 𝑉𝑅 + 𝑉𝑆 

𝑉2 = 𝑉0𝑖̂ − 𝑅𝜔𝑖̂ = (𝑉0 − 𝑅𝜔)𝑖̂     𝑟2 = 𝑅 𝑗̂ 

𝑉1 = 𝑉0𝑘̂       𝑟1 = 0 𝑗̂ 
 

0
pipe

Q
V

A
=  

 

 

∑𝑀𝑧 = 0 = −𝑇0𝑘̂ = (𝑟2 × 𝑉2)𝑚̇𝑜𝑢𝑡 − (𝑟1 × 𝑉1)𝑚̇𝑖𝑛 

 

out inm m Q= =   0
ˆ ˆ( )( )oT k R V R k Q − = − −  

 

0 0

2

V T

R QR



= −   interestingly, even for T0=0, ωmax=V0/R 

(limited by ratio such that large R small ; large V0 large ) 

Retarding torque due to 

bearing friction 



63 

 

Differential Equation of Conservation of Angular 

Momentum: 

 

Apply CV form for fixed CV: 

 

z = angular acceleration 

I  = moment of inertia 

2 2 2 2
z

dx dx dy dy
I a dy b dy c dx d dx = + − −  

( )z xy yxI dxdy  = −  

Since 
3 3 2 2

12 12
I dxdy dydx dxdy dx dy

 
   = + = +     

2 2

12
z xy yxdx dy


   + = −   

0, 0
lim

dx dy→ → yxxy
 = , similarly, 

zxxz
 = , 

zyyz
 =  

i.e.  
jiij

 =  stress tensor is symmetric (stresses 

themselves cause no rotation) 
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