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Chapters 1 Preliminary Concepts & 2 Fundamental Equations of Compressible 

Viscous Flow 

(2) Fluid Properties  

(1) Kinematic: linear (V) angular (ω/2) velocity, rate of strain (εij), vorticity (ω), and 

acceleration (a). 

 

(2) Transport:  viscosity (μ), thermal conductivity (k), and mass diffusivity (D). 

 

(3) Thermodynamic:  pressure (p), density (ρ), temperature (T), internal energy (û), 

enthalpy       (h = û + p/ρ), entropy (s), specific heat (Cv, Cp, γ = Cp/ Cv, etc). 

 

(4) Miscellaneous:  surface tension (σ), vapor pressure (pv), etc. 

 

(1)  Kinematic Properties: 

  

Kinematics refers to the description of the flow pattern without consideration of 

forces and moments, whereas dynamics refers to descriptions of F and M. 

Lagrangian vs. Eulerian description of velocity and acceleration: 

(a) Lagrangian approach focuses on tracking individual fixed particles. 
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(b) Eulerian approach focuses on fixed points in space. 

 

(u,v,w) = V(x,t) are velocity components in (x,y,z) directions. 

𝑑𝑉(𝑥, 𝑡) =
𝜕𝑉

𝜕𝑡
𝑑𝑡 +

𝜕𝑉

𝜕𝑥𝑖
𝑑𝑥𝑖 

However, dxi and dt are not independent since derivative is assumed to follow a fluid 

particle i.e. 

𝑑𝑥𝑖 = 𝑢𝑖𝑑𝑡 

𝑑𝑉(𝑥, 𝑡)

𝑑𝑡
=

𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥𝑖
𝑢𝑖 

In fluid mechanics special notation is used to define substantial/material derivative, 

which follows a fluid particle: 
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Dt

VD
 = Lagrangian time rate of change of velocity 

VV
t

V





 = local & convective acceleration in terms of Eulerian derivatives 

𝑎 = 𝑎𝑥𝑖 + 𝑎𝑦𝑗 + 𝑎𝑧𝑘 

𝑎𝑥 =
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢
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𝜕𝑤

𝜕𝑡
+ 𝑢
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+ 𝑣
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+ 𝑤
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Note: 

2

( )
2

V
V V V V      vector identity, i.e., for irrotational 

flow convective acceleration becomes familiar KE term in the Bernoulli equation. 

 

The Eulerian approach is more convenient since we are seldom interested in 

simultaneous time history of individual fluid particles, but rather time history of fluid 

motion (and F, M) in fixed regions in space (control volumes).  However, three 

fundamental laws of fluid mechanics (i.e. conservation of mass, momentum, and 

energy) are formulated for systems (i.e. particles) and not control volumes (i.e. 

regions) and therefore must be converted from system to CV: Reynolds Transport 

Theorem. 
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V(x,t) is a vector field:  Vector operators divergence and curl lead to other 

kinematics properties: 
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rate of change   per unit = - rate of change ρ per unit ρ 

For incompressible fluids, ρ = constant 

0 V  i.e. fluid particles have constant , but not necessarily shape 
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kjiVcurlV zyx
ˆˆˆ     

= vorticity = 2 * angular velocity of fluid particle 
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0. 2  V       Potential Flow Theory 
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Other useful kinematic properties include volume and mass flow-rate (Q, m


), 

average velocity (V ), and circulation (Γ) 

 

dAnVQ
A

   where Q = volume of fluid per unit time through A ( flux 

of Vn through A bounded by S:”flux” generally used to 

mean surface integral of variable)  

 


A

dAnVm    where m


= mass of fluid per unit time  

    through A 

V = Q/A   where V  = average velocity through A 


A

dAA    where A = surface area 

 
AS

dAVdsV  (Stokes theorem - relates line and area integrals) 

line integral for tangential velocity component =  
A

dAn = flux (surface 

integral) of  normal vorticity component 

Kutta-Joukowski Theorem:  lift (L) per unit span for an arbitrary 2D cylinder in 

uniform stream U with density ρ is L = ρUΓ, with direction of L perpendicular to U. 
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(2)  Transport Properties 

There is a close analogy between momentum, heat, and mass transport; therefore, 

coefficient of viscosity (μ), thermal conductivity (k), and mass diffusivity (D) are 

referred to as transport properties. 

Heat Flux: 

Fourier’s Law:  q k T    2

J

m s

 
 
   

(rate of heat flux is proportional to the temperature gradient per unit area; flux is 

from higher to lower T) 

 

 
W

k
mK

 
 
 

 = f(x,y,z)      solid 

           = constant    liquid {isotropic} 

Mass Flux: 

Fick’s Law:   CDq 
2

kg

m s

 
 
 

 

 

(rate of mass flux is proportional to concentration (C) gradient per unit area; flux is 

from higher to lower C) 

      D  

2m

s

 
 
 
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Momentum Flux: 

Newtonian Fluid:  
dy

du
    2

N

m

 
 
 

  1D flow 

(rate of momentum flux/shear stress is proportional to the velocity gradient per unit 

area, which tends to smooth out the velocity profile) 

     




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
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For 3D flow, the shear/rate of strain relationship is more complex, as will be shown 

later in the derivation of the momentum equation. 
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Where  , ,iu u v w ,  , ,ix x y z  

λ= 2nd coefficient of viscosity 

For heat and mass, transported quantities are scalars and flux is a vector; whereas 

for momentum, transported quantity is a vector and flux is a tensor.  Also, all three 

laws are phenomenological (i.e. based on empirical evidence: experience and 

experiments). 

Non-Newtonian fluids follow nonlinear shear/rate of strain relationships 

    τ α εij
n  n < 1  pseudoplastic 

       n = 1 Newtonian 

       n > 1 dilatant 

μ (and k) are also thermodynamic properties: 

  μ = μ(gas or liquid, T, p) 
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For both gases and liquids, μ increases with p, but Δ μ is small and usually neglected.  

For gases μ increases with T, whereas for liquids μ decreases with T.  For gases, 

momentum transport and μ are roughly proportional to √T similarly as per random 

thermal speed. For liquids, shear stress is due to intermolecular cohesive forces more 

than thermal molecular motions, which decrease with T. 

Kinematic viscosity: 

 /  

2m

s

 
 
 

 arises in equations as  

       diffusion coefficient     Fig. A.2 Textbook 

Reynolds Number: 

 



 ULUL
Re  U = velocity scale, 

 L = length scale  

The Reynolds number is an important nondimensional parameter (ratio 

inertia/viscous forces) which characterizes fluid flow. 
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(3)  Thermodynamic Properties 

 

Classical Thermodynamics:  the study of equilibrium states of matter, in which 

properties are assumed uniform in space and time. 

 

Thermodynamic system = fixed mass separated from surroundings by boundary 

through which heat and work are exchanged (but not mass).  Properties are state 

functions (i.e. depend on current state only and not path), whereas heat transfer and 

work are path functions. 

 

A classical thermodynamic system is assumed static, whereas fluids are often in 

motion; however, if the relaxation time (time it takes material to adjust to a new 

state) is small compared to the time scale of fluid motion, an assumption is made 

that thermodynamic properties are point functions and that laws and state relations 

of static equilibrium thermodynamics are valid.  In gases and liquids at normal 

pressure, relaxation time is very small; hence, only a few molecular collisions are 

needed for adjustment.  Exceptions are rarefied gases, chemically reacting flows, 

sudden changes such as shock waves, etc. 

 

For single-phase pure substances, only two properties are independent and all others 

follow through equations of state, which are determined experimentally or 

theoretically.  Some mixtures, such as air, can also be considered a pure substance, 

whereas others such as salt water cannot and require additional numbers of 

independent properties, e.g., sea water requires three (salinity, T and p) 

 

Pressure    p   [N/m2] 

Temperature   T   [K] 

Density    ρ   [kg/m3] 

Internal Energy  û   [Nm/kg] = [J/kg] 

Enthalpy   h = û + p/ ρ   [Nm/kg] = [J/kg] 



13 
 

Entropy    s   [J/kg K] 

 

ρ = ρ(p,T) û = û(p,T) h = h(p,T) s = s(p,T)  

 

Specific weight  γ = ρg  [N/m3]  

 

ρair = 1.205 kg/m3      γair = 11.8 N/m3  

ρwater = 1000 kg/m3     γwater = 9790 N/m3 

ρmercury = 13580 kg/m3    γmercury = 132,948 N/m3 

  

𝑆𝐺𝑔𝑎𝑠 =
𝜌𝑔𝑎𝑠

𝜌𝑎𝑖𝑟 (20°𝐶)
=

𝜌𝑔𝑎𝑠

1.205 𝑘𝑔/𝑚3
                   SGair = 1; SGHe = 0.138 

3

(4 )
1000o

liquid liquid

liquid

water C

SG
kg m

 


 

         SGwater = 1; SGHg = 13.6 

Total stored energy per unit mass (e):   

 

    e = û + 1/2V2 + gz 

 

û = energy due to molecular activity and bonding forces (internal energy) 

1/2V2 = work required to change speed of mass from  

0 to V per unit mass (kinematic energy) 

 

gz = work required to move mass from 0 to  

  
ˆˆ ˆr xi yj zk    against 

ˆg gk   per unit mass 

  ( mrgm / ) (potential energy) 
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(4)  Miscellaneous Properties 

 

Surface Tension: 

Two non-mixing liquids or liquids and gases form an interface across which there is 

a discontinuity in density.  The interface behaves like a stretched membrane under 

tension.  The tension originates due to strong intermolecular cohesive forces in the 

liquid that are unbalanced at the interface due to loss of neighbors, i.e., liquid 

molecules near the interface pull the molecules on the interface inward; resulting in 

contraction of the interface called surface tension per unit length. 

 

 

σ = coefficient of surface tension N/m   

Line force = Fσ = σL where L = length of cut through interface   

σ =f (two fluids, T) 

 

 

 

 

Effects of surface tension (γf not considered): 

(1) Pressure jumps across curved interfaces 

 

Fluid 1 

L 
Fσ 

Fluid 2 Direction of Fσ is normal to cut 



15 
 

 

(a)  Cylindrical interface   

 Force Balance: 

 2σL = 2(pi-po)RL 

 Δp = σ/R 

pi > po , i.e. pressure is larger on concave vs.      

  convex side of interface 

(b) Spherical interface (droplet) 
2πRσ = πR2 Δp  Δp = 2σ/R 

 

(c) Bubble 
πRσ+2πRσ = πR2 Δp  Δp = 4σ/R 

 

(d)  General interface 

  Δp = σ(R1
-1 + R2

-1) 

R1,2 = principle radii of curvature 

 

(2) Contact Angle 
 

When the surface of a solid intersects the interface the contact angle can either be 

wetting (θ < 900) or non-wetting (θ > 900). θ depends on both the two fluids and 

the solid surface properties. For clean glass intersecting an air-water interface θ=0 

(wetting) and an air-mercury interface θ=135 (nonwetting). 
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Capillary tube 

 

 

   

 

 

 

 

 

 

 

Surface Tension Force = Weight of fluid 

 

2πRσ cos θ = ρghπR2 

       
R

h


 cos2
         h α R-1  (i.e. larger h for smaller R) 

patm 

p(z) 

Jump across 

boundary 

due to σ 

 < 90o 

wetting 

 > 90o 

non-wetting 
p=patm – γh 

p > concave, i.e. air side 
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h > 0 = wetting, h < 0 = non-wetting 

                      

(b) Parallel plates 
For two parallel plates 2R apart with depth b: 

 

Surface Tension Force = Weight of fluid  

 

2bσ cos θ = ρgh2Rb  R
h



 cos


 

(c) Pressure jump 

wetting-non     

   wetting

h

h

ppppzczp
dz

dp
atmhzhzatatm














 

h 

patm 

patm 
patm 

Pressure jump 

due to σ 

p=patm+γh 

p(z) 

Non-wetting 

drives liquid 

down tube 

p > concave, i.e. water side 
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For general interface: 

h>0 (wetting): 

         
1 1

1 2( ) 0          water airp R R h p p concave 

shape 

h<0 (non-wetting): 

1 1

1 2( ) 0          water airp R R h p p convex 

shape 

(3)  Transformation liquid jet into droplets 

 

(4)  Binding of wetted granular material such as sand 

 

(5)  Capillary waves 

 

Like stretched membrane (string) waves, surface tension acts as restoring force 

resulting in interfacial waves called capillary waves. 

 

Cavitation: 

 

 When the pressure in a liquid falls below the vapor pressure, it will evaporate 

(i.e. become a gas).  If due to temperature changes alone, the process is called 

boiling, whereas if due to liquid velocity, the process is called cavitation.   

22/1 U

pp
Ca va




  

Ca = Cavitation # 
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pv = vapor pressure 

pa = ambient pressure 

U = characteristic velocity 

 

If the local pressure coefficient Cp ( 21/ 2

ap p
Cp

U


 ) falls below the cavitation 

number Ca, the liquid will cavitate. 

Ca = f (liquid/properties, T) 

 

Effects of cavitation: 

(1) erosion 
(2) vibration 
(3) noise 
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Flow Classification: 

(1) Spatial dimensions: 1D, 2D, 3D 

(2) Steady or unsteady: 0




t
 or 0




t
 

(3) Compressible (ρ  constant) or incompressible (ρ = constant)     
(4) Inviscid or Viscous:  μ = 0 or μ   0. 
(5) Rotational or Irrotational: ω   0 or ω = 0. 
(6) Inviscid/Irrotational: potential flow 
(7) Viscous, laminar or turbulent: Retrans 
(8) Viscous, low Re:  Stokes flow 
(9) Viscous, high Re external flow:  boundary layer 
(10)  Etc. 

 

Depending on flow classification, different approximations can be made to exact 

governing differential equations resulting in different forms of approximate 

equations and analysis techniques. 

Flow Analysis Techniques: 

 

“Reality” 

Fluids Eng. Systems Components Idealized 

EFD 

 

Mathematical Physics Problem Formulation 

 

AFD 

 

CFD 

 


