<u>Chapter 6</u>: Viscous Flow in Ducts

6.4 Turbulent Flow in Pipes and Channels using mean-velocity correlations.

1. <u>Smooth circular pipe</u>

Recall laminar flow exact solution:

$$f = \frac{8\tau_w}{\rho u_{ave}^2} = 64 / \operatorname{Re}_d \qquad \qquad \operatorname{Re}_d = \frac{u_{ave}d}{\upsilon} \le 2000$$

A turbulent flow "approximate" solution can be obtained simply by computing u_{ave} based on log law.

$$\frac{u}{u^*} = \frac{1}{\kappa} \ln \frac{yu^*}{v} + B$$

Where:

$$u = u(y); \ \kappa = 0.41; \ B = 5; \ u^* = \sqrt{\tau_w/\rho}; \ y = R - r$$

$$V = u_{ave} = \frac{Q}{A} = \frac{1}{\pi R^2} \int_0^R u^* \left[\frac{1}{\kappa} ln \frac{yu^*}{v} + B \right] 2\pi r \, dr$$
$$= \frac{1}{2} u^* \left(\frac{2}{\kappa} ln \frac{Ru^*}{v} + 2B - \frac{3}{\kappa} \right)$$

10105501	1104	
		R 4= 12-1
		Une = 102 [2" [94-16 : 22" + R] 27 444 1.
		d the start ag = av
and a state of the s		- ZN4 [Fairla Y 44 + 18] (a)
	Bysomercyclus -	- REJLA IN TO J (Y-K) dy
Hand Banklandersteinen Alle		- 244 [[- 1, 1, 14 - 7]] [- 1, 1]
		= 22 [][x-1/37+5]ydy-r][x-1/37+5]dy]
	Personal States	$X = \frac{3}{24}$ $y = \frac{1}{24}$ $dy = \frac{1}{24}$ $dx = \frac{1}{24}$ $dy = \frac{1}{242}$ $x dy$
		0
		$ (\textbf{B}) = \int \left[\frac{1}{2} x^{-1} dx + B \right] \frac{r}{1+2} x dx = \frac{v^2}{1+2} \int \left(\frac{x}{2} dx + B x \right) dx $
9 		Kan Kan
		$= \frac{x^2}{12} \int q_{x-1} \left(\frac{x^2}{2} h_x - \frac{x^2}{2} \right) + \frac{B_y^2}{2}$
		VZ-V4
		= - 1/- 12342 & 1211 + 12242 - 13 12242
		The Kine The
		$= -\frac{R^2}{2} \sqrt{R_{21}^2 + R_{2}^2 - R_{22}^2}$
		$E = -R \left[\sum_{i=1}^{n} \frac{1}{n} + E \right]^{2} dv = -R \left[\sum_{i=1}^{n} \frac{1}{n} + E \right]$
		Rue Rue Arsing and the Real Rue Art and the Ru
22*	Γ_	RZ O RUL RZ - BRZ RY Facilitate and and
P	e L	
	+	at 1 at - 2 + 522]
		$= -\chi + SR^2$
2	24	x 1 5 - TR + 13/2]
- 	21 ª I	ak-1 h azi - 3 + 3]
12	ut [The hast - = + 2B] = une
	-	
1.1		

Or:

$$\frac{V}{u^*} = 2.44 \ln \frac{Ru^*}{v} + 1.34$$

Chapter 6-part4

$$\frac{V}{u^*} = \left(\frac{\rho V^2}{\tau_w}\right)^{1/2} = \left(\frac{8}{f}\right)^{1/2}$$

$$\frac{Ru^*}{\nu} = \frac{0.5Vd}{\nu}\frac{u^*}{V} = \frac{1}{2}Re_d\left(\frac{f}{8}\right)^{1/2}$$

$$f^{-1/2} = 1.99 \log[\text{Re}_d f^{1/2}] - 1.02$$

= $2 \log[\text{Re}_d f^{1/2}] - 0.8$

EFD Adjusted constants.

f only drops by a factor of 5 over $4 \times 10^3 \le \text{Re} \le 10^8$

Since f equation is implicit, it is not easy to see dependency on ρ , μ , V, and D

 $f(pipe) = 0.316 \operatorname{Re}_{D}^{-1/4} \qquad 4000 < \operatorname{Re}_{D} < 10^{5}$ Blasius (1911) power law curve fit to data. $h_{f} = \frac{\Delta p}{\gamma} = f \frac{L}{D} \frac{V^{2}}{2g}$ Turbulent Flow: $\Delta p = 0.158L\rho^{3/4}\mu^{1/4}D^{-5/4}V^{7/4}$ Nearly linear Only slightly Drops with pipe diameter. $= 0.241L\rho^{3/4}\mu^{1/4}D^{-4.75}Q^{1.75}$

Laminar flow: $\Delta p = 128\mu LQ/\pi D^4$

 Δp (turbulent) decreases more sharply with D than Δp (laminar) for same Q; therefore, increase D for smaller Δp , although large D more expensive. 2D decreases Δp by 27 for same Q.

$$\frac{u_{\max}}{u^*} = \frac{u(r=0)}{u^*} = \frac{1}{\kappa} \ln \frac{Ru^*}{\upsilon} + B$$

Combine with

$$\frac{V}{u^*} = \frac{1}{\kappa} \ln \frac{Ru^*}{\upsilon} + B - \frac{3}{2\kappa}$$
$$\Rightarrow \frac{V}{u^*} = \frac{u_{\text{max}}}{u^*} - \frac{3}{2\kappa} \Rightarrow V = u_{\text{max}} - \frac{3u^*}{2\kappa} \Rightarrow \frac{u_{\text{max}}}{V} = 1 + \frac{3u^*}{2\kappa V}$$

Also

$$\tau_{w} = \rho u^{*2} \text{ and } f = \frac{\tau_{w}}{1/8\rho V^{2}} \Longrightarrow f = \frac{\rho u^{*2}}{1/8\rho V^{2}} \Longrightarrow \frac{u^{*}}{V} = \sqrt{f/8}$$
$$\Longrightarrow \frac{u_{\max}}{V} = 1 + \frac{3u^{*}}{2\kappa V} = 1 + \frac{3}{2\kappa}\sqrt{f/8} = 1 + 1.3\sqrt{f}$$

Or:

For Turbulent Flow:
$$\frac{V}{u_{\text{max}}} = (1 + 1.3\sqrt{f})^{-1}$$

$$\boxed{(u_{\text{max}} + K + 10^{4}) + 10^{6} + 10^{6}}$$

$$\boxed{(u_{\text{max}} + K + 10^{4}) + 10^{6} + 10^{6}}$$

$$\boxed{(u_{\text{max}} + K + 10^{4}) + 10^{6} + 10^{6}}$$

$$\boxed{(u_{\text{max}} + K + 10^{4}) + 10^{6} + 10^{6}}$$

$$\boxed{(u_{\text{max}} + K + 10^{4}) + 10^{6} + 10^{6}}$$

$$\boxed{(u_{\text{max}} + K + 10^{4}) + 10^{6} + 10^{6}}$$

$$\boxed{(u_{\text{max}} + K + 10^{4}) + 10^{6} + 10^{6}}$$

$$\boxed{(u_{\text{max}} + K + 10^{4}) + 10^{6} + 10^{6}}$$

	TABLE 10.1	EXPONENTS FO	R POWER-LAW	EQUATION AND	
	RAT	IO OF MEAN TO	MAXIMUM VEL	OCITY	
Re→	4×10^3	2.3×10^4	1.1 × 10 ⁵	1.1 × 10 ⁶	3.2 × 10 ⁶
	1	1	1	1	1
$m \rightarrow$	6.0	6.6	7.0	8.8	10.0
$\overline{V}/V_{\rm max} \rightarrow$	0.791	0.807	0.817	0.850	0.865

SOURCE: Schlichting (36). Used with permission of the McGraw-Hill Companies.

2. <u>Turbulent Flow in Rough circular pipe</u> Experiments: roughness height k forces log law outward on abscissa by amount ln k⁺ where $k^+ = \frac{ku^*}{\nu}$ with same slope $\frac{1}{\kappa}$ which causes B to be reduced by $\Delta B(k^+) \approx \frac{1}{\kappa} \ln k^+$.

Laminar flow unaffected, but for turbulent flow the effects of roughness initiate for lower $\text{Re}_d = \text{Vd/v}$ as k/d increases. For all k/d, the friction factor becomes constant (fully rough) at high Re_d :

1. $k^+ < 5$	hydraulically smooth
2. $5 < k^+ < 70$	transitional roughness (Re dependence)
3. $k^+ > 70$	fully rough (no Re dependence)
For fully rough flow:	

 $\Delta B(k^+) \approx \frac{1}{\kappa} \ln k^+ - 3.5$

And log law modified for roughness becomes:

$$u^{+} = \frac{1}{\kappa} \ln y^{+} + B - \Delta B(k^{+}) = \frac{1}{\kappa} \ln y/k + 8.5$$

i.e., independent viscosity/ Re_d . Integration for $u_{ave} = V$ provides:

$$\frac{V}{u^*} = 2.44 ln \frac{d}{k} + 3.2$$
 or $f^{-1/2} = -2\log \frac{k/d}{3.7}$ (fully rough flow)

There is no Re_d effect; therefore, head loss varies as V² and f increases 9 times as k/d increases by factor 5000. Combining smooth and fully rough friction factor formulas to include transitionally rough regime produces the Colebrook-White equation, i.e., Moody diagram:

$$f^{-\frac{1}{2}} = -2 \log \left[\frac{\frac{k}{d}}{3.7} + \frac{2.51}{Re_d f^{-\frac{1}{2}}} \right]$$
 Moody diagram

$$\sim -1.8 \log \left[\frac{6.9}{Re_d} + \left(\frac{k/d}{3.7} \right)^{1.11} \right]$$
 Approximate explicit formula

Moody accuracy $\pm 15\%$ for its full range and explicit within 2% Moody.

There are basically four types of problems involved with uniform flow in a single pipe:

- 1. Given d, L, and V or Q, ρ , μ , and g, compute the head loss h_f (head loss problem).
- Given d, L, h_f , ρ , μ , and g, compute the velocity V or flow rate Q (flow rate 2. problem).
- 3. Given Q, L, h_f , ρ , μ , and g, compute the diameter d of the pipe (sizing problem).
- Given Q, d, h_f , ρ , μ , and g, compute the pipe length L. 4.
- 1. Determine the head loss.

The first problem of head loss is solved readily by obtaining f from the Moody diagram, using values of Re and k_s/D computed from the given data. The head loss h_f is then computed from the Darcy-Weisbach equation.

$$f = f(Re_D, k_s/D)$$

$$\begin{split} h_f &= f \, \frac{L}{D} \frac{V^2}{2g} = \Delta h \\ &= \Delta h = \left(z_1 - z_2 \right) + \left(\frac{p_1}{\gamma} - \frac{p_2}{\gamma} \right) \\ &= \Delta \left(\frac{p}{\gamma} + z \right) \end{split}$$

 $Re_D = Re_D(V, D)$

2. Determine the flow rate.

The second problem of flow rate is solved by trial, using a successive approximation procedure. This is because both Re and f(Re) depend on the unknown velocity, V. The solution is as follows:

1) solve for V using an assumed value for f and the Darcy-Weisbach equation.

- 2) using V compute Re
- 3) obtain a new value for $f = f(Re, k_s/D)$ and repeat as above until convergence

Or can use Re
$$f^{1/2} = \frac{D^{3/2}}{v} \left(\frac{2gh_f}{L}\right)^{1/2}$$

scale on Moody Diagram

1)
$$\operatorname{Re} f^{1/2}$$
 1) compute and k_s/D
2) read f
3) solve V from $h_f = f \frac{L}{D} \frac{V^2}{2g}$
4) $Q = VA$

3. Determine the size of the pipe.

The third problem of pipe size is solved by trial, using a successive approximation procedure. This is because h_f , f, and Q all depend on the unknown diameter D. The solution procedure is as follows:

1) solve for D using an assumed value for f and the Darcy-Weisbach equation along with the definition of Q

$$\mathbf{D} = \left[\frac{8\mathrm{LQ}^2}{\pi^2 \mathrm{gh}_{\mathrm{f}}}\right]^{1/5} \cdot \mathrm{f}^{1/5}$$

known from given data.

- 2) using D compute Re and k_s/D
- 3) obtain a new value of $f = f(Re, k_s/D)$ and repeat as above until convergence
- 4. Determine the pipe length.

The fourth problem of pipe length is solved by obtaining f from the Moody diagram, using values of Re and k_s/D computed from the given data. Then using given h_f, V, D, and calculated f to solve L from $L = \frac{2g}{V^2} \frac{Dh_f}{f}$.

10.5 Flow at Pipe Inlets and Losses From Fittings

For real pipe systems in addition to friction head loss there are additional losses called minor losses due to

entrance and exit effects expansions and contractions bends, elbows, tees, and other fittings valves (open or partially closed)	<pre>can be large effect</pre>
--	--------------------------------

For such complex geometries we must rely on experimental data to obtain a loss coefficient

$$K = \frac{h_m}{\frac{V^2}{2g}}$$
 head loss due to minor losses

In general,

1.

2.

3.

4.

Loss coefficient data is supplied by manufacturers and also listed in handbooks. The data are for turbulent flow conditions but seldom given in terms of Re.

Modified Energy Equation to Include Minor Losses:

$$\frac{p_1}{\gamma} + z_1 + \frac{1}{2g}\alpha_1 V_1^2 + h_p = \frac{p_2}{\gamma} + z_2 + \frac{1}{2g}\alpha_2 V_2^2 + h_t + h_f + \sum h_m h_m = K \frac{V^2}{2g}$$

Note: Σh_m does not include pipe friction and e.g. in elbows and tees, this must be added to h_f .

1. Flow in a bend:

i.e. $\frac{\partial p}{\partial r} > 0$ which is an adverse pressure gradient in r direction. The slower moving fluid near wall responds first

and a swirling flow pattern results.

This swirling flow represents an energy loss which must be added to the h_L .

Also, flow separation can result due to adverse longitudinal pressure gradients which will result in additional losses.

This shows potential flow is not a good approximate in internal flows (except possibly near entrance)

- 2. Valves: enormous losses
- 3. Entrances: depends on rounding of entrance
- Exit (to a large reservoir): K = 1
 i.e., all velocity head is lost
- 5. Contractions and Expansions sudden or gradual

theory for expansion: $h_{L} = \frac{(V_{1} - V_{2})^{2}}{2g}$ D = 2

from continuity, momentum, and energy (assuming $p = p_1$ in separation pockets)

$$\Rightarrow K_{\rm SE} = \left(1 - \frac{d^2}{D^2}\right)^2 = \frac{h_{\rm m}}{V_1^2/2g}$$

no theory for contraction:

$$K_{\rm SC} = .42 \left(1 - \frac{d^2}{D^2} \right)$$

from experiment

Abrupt Expansion

Consider the flow from a small pipe to a larger pipe. Would like to know $h_L = h_L(V_1, V_2)$. Analytic solution to exact problem is

extremely difficult due to the occurrence of flow separations and turbulence. However, if the assumption is made that the pressure in the separation region remains approximately constant and at the value at the point of

separation, i.e., p_1 , an approximate solution for h_L is possible:

Apply Energy Eq from 1-2 ($\alpha_1 = \alpha_2 = 1$)

$$\frac{\mathbf{p}_1}{\gamma} + \mathbf{z}_1 + \frac{\mathbf{V}_1^2}{2g} = \frac{\mathbf{p}_2}{\gamma} + \mathbf{z}_2 + \frac{\mathbf{V}_2^2}{2g} + \mathbf{h}_L$$

Momentum eq. For CV shown (shear stress neglected)

$$\sum F_{s} = p_{1}A_{2} - p_{2}A_{2} - \underbrace{W \sin \alpha}_{r} = \sum \rho u \underline{V} \cdot \underline{A}$$

$$= \rho V_{1}(-V_{1}A_{1}) + \rho V_{2}(V_{2}A_{2})$$

$$= \rho V_{2}^{2}A_{2} - \rho V_{1}^{2}A_{1}$$

$$W \sin \alpha$$

next divide momentum equation by γA_2

$$\dot{\gamma} A_2 \qquad \qquad \frac{p_1}{\gamma} - \frac{p_2}{\gamma} - (z_2 - z_1) = \frac{V_2^2}{g} - \frac{V_1^2}{g} \frac{A_1}{A_2}$$
from energy equation
$$\frac{V_2^2}{2g} - \frac{V_1^2}{2g} + h_L = \frac{V_2^2}{g} - \frac{V_1^2}{g} \frac{A_1}{A_2}$$

$$h_L = \frac{V_2^2}{2g} + \frac{V_1^2}{2g} \left(1 - \frac{2A_1}{A_2}\right)$$

$$h_L = \frac{1}{2g} \left[V_2^2 + V_1^2 - 2V_1^2 \frac{A_1}{A_2} \right] \begin{cases} \text{continuity eq.} \\ V_1 A_1 = V_2 A_2 \\ \\ -2V_1 V_2 \end{cases} \qquad \qquad \frac{A_1}{A_2} = \frac{V_2}{V_1} \\ \end{cases}$$

$$If V_2 << V_1, \text{ i.e., if } A_2 \rightarrow \infty \left(v_2 = \frac{A_1}{A_2} v_1 \right)$$

$$If V_2 << V_1, \text{ i.e., if } A_2 \rightarrow \infty \left(v_2 = \frac{A_1}{A_2} v_1 \right)$$

$$And K_L = \frac{h_L}{(V_1^2/2g)} \rightarrow 1$$

TABLE 10.2 LOSS COEFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS

Description	Sketch	Additional Data		K	Source
	X I	rld		K.	(2)*
Pipe entrance	· V	0	.0	0.50	•
Tipe entrance	<i>d</i>	0	.1	0.12	
$h_L = K_e V^2 / 2g$	K t	>0.2		0.03	
			K _C	K _C	
Contraction		D_2/D_1	$\theta = 60^{\circ}$	$\theta = 180^{\circ}$	(2)
	D ₂	0.0	0.08	0.50	
		0.20	0.08	0.49	
	$D_1 \qquad \theta \qquad \gamma \qquad \gamma$	0.40	0.07	0.42	
		0.60	0.06	0.27	
•		0.80	0.06	0.20	
$h_L = K_C V_2^2 / 2g$		0.90	0.06	0.10	
		_ /_	K _E	K_E	
Expansion	D.	D_{1}/D_{2}	$\theta = 20^{\circ}$	$\theta = 180^{\circ}$	(2)
		0.0		1.00	
		0.20	0.30	0.87	
	TK +	0.40	0.25	0.70	
		0.60	0.15	0.41	
$h_L = K_E V_1^2 / 2g$		0.80	0.10	0.15	
	Vanes	Without			(27)
000 1 1 1	ا ``ر ا	vanes	K _b :	= 1.1	(37)
90° miter bend		With			
		vanes	K_b	= 0.2	(37)
		r/d			(5)
		,			and
	d	1	$K_b =$	= 0.35	(19)
90° smooth		2		0.19	
bend	· · · · · · · · · · · · · · · · · · ·	4		0.16	
	↓	6		0.21	
	1 • 1	8		0.28	
		10		0.32	
	Globe valve-wide open	. <i>K</i> ,	= 10.0		(37)
	Angle valve-wide open	K_{μ}	= 5.0		
	Gate valve-wide open	K_{ν}	= 0.2		
TTI	Gate valve-half open	Κ,	= 5.6		
Inreaded	Return bend	K_b	= 2.2		
pipe	Tee				
rittings	straight-through flow	K	= 0.4		
	side-outlet flow	K_{i}	= 1.8		
	90° elbow	K_t	, = 0.9		
	45° elbow	K_t	= 0.4		

*Reprinted by permission of the American Society of Heating, Refrigerating and Air Conditionin Engineers, Atlanta, Georgia, from the 1981 ASHRAE Handbook-Fundamentals.

