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Chapter 6:  Viscous Flow in Ducts 
 

6.4 Turbulent Flow in Pipes and Channels using mean-

velocity correlations. 
 

1. Smooth circular pipe 
 

Recall laminar flow exact solution: 
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A turbulent flow “approximate” solution can be obtained 

simply by computing uave based on log law. 

 

B
v

yu

u

u
+=

*

*
ln

1

  

 

Where: 
 

𝑢 = 𝑢(𝑦);   𝜅 = 0.41;   𝐵 = 5;   𝑢∗ = √𝜏𝑤/𝜌;   𝑦 = 𝑅 − 𝑟 

 

𝑉 = 𝑢𝑎𝑣𝑒 =
𝑄

𝐴
=

1

𝜋𝑅2
∫ 𝑢∗ [

1

𝜅
𝑙𝑛

𝑦𝑢∗

𝑣
+ 𝐵] 2𝜋𝑟 𝑑𝑟

𝑅

0

 

 

=
1

2
𝑢∗ (

2

𝜅
𝑙𝑛

𝑅𝑢∗

𝑣
+ 2𝐵 −

3

𝜅
) 



058:0160  Chapter 6-part4 

Professor Fred Stern     Fall 2024  2 

 
 



058:0160  Chapter 6-part4 

Professor Fred Stern     Fall 2024  3 

Or:     
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Since f equation is implicit, it is not easy to see dependency 

on ρ, μ, V, and D 
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Turbulent Flow: 𝛥𝑝 = 0.158𝐿𝜌3/4𝜇1/4𝐷−5/4𝑉7/4 
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Laminar flow: 𝛥𝑝 = 128𝜇𝐿𝑄/𝜋𝐷4 

f only drops by a factor of 5 over 4×103 ≤  Re ≤  108 

EFD Adjusted constants.  

4000 < ReD < 105 

Blasius (1911) power law 

curve fit to data. 

Nearly linear 
Only slightly 

with μ 

Drops with pipe 

diameter. 

Nearly quadratic  

(As expected) 
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p  (turbulent) decreases more sharply with D than p (laminar) 

for same Q; therefore, increase D for smaller p , although large 

D more expensive.  2D decreases p  by 27 for same Q. 
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Combine with  
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Or:  

 For Turbulent Flow: ( ) 1
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Recall laminar flow: 
5.0/ max =uV  
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2. Turbulent Flow in Rough circular pipe 

Experiments: roughness height k forces log law outward on 

abscissa by amount ln k+ where 𝑘+ =
𝑘𝑢∗

𝜈
 with same slope 

1

𝜅
 which causes B to be reduced by 𝛥𝐵(𝑘+) ≈

1

𝜅
 ln k+.   

 

 
Laminar flow unaffected, but for turbulent flow the effects 

of roughness initiate for lower Red = Vd/ as k/d increases.  

For all k/d, the friction factor becomes constant (fully 

rough) at high Red: 
 

1.  k+ < 5  hydraulically smooth 

2.  5 < k+ < 70 transitional roughness (Re dependence) 

3.  k+ > 70  fully rough (no Re dependence) 

For fully rough flow: 
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𝛥𝐵(𝑘+) ≈ 
1

𝜅
 ln k+ - 3.5 

 

And log law modified for roughness becomes: 

 

𝑢+ =
1

𝜅
𝑙𝑛 𝑦+ + 𝐵 − 𝛥𝐵(𝑘+) = 

1

𝜅
𝑙𝑛 𝑦/𝑘 + 8.5 

 

i.e., independent viscosity/Red.  Integration for uave = V 

provides: 

 
𝑉

𝑢∗ = 2.44𝑙𝑛
𝑑

𝑘
+ 3.2  or  𝑓−1/2= −2log 

𝑘/𝑑

3.7
 (fully rough flow) 

 

There is no Red effect; therefore, head loss varies as V2 and 

f increases 9 times as k/d increases by factor 5000.  

Combining smooth and fully rough friction factor formulas 

to include transitionally rough regime produces the 

Colebrook-White equation, i.e., Moody diagram: 
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Moody accuracy ±15% for its full range and explicit within 

2% Moody. 

 

Moody diagram  

Approximate explicit 

formula 
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There are basically four types of problems involved with 

uniform flow in a single pipe: 

 

 
 

 

 

1. Determine the head loss. 

 

The first problem of head loss is solved readily by obtaining f 

from the Moody diagram, using values of Re and ks/D 

computed from the given data.  The head loss hf is then 

computed from the Darcy-Weisbach equation. 

 

 f = f(ReD, ks/D) 
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 ReD = ReD(V, D) 
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2. Determine the flow rate. 

 

The second problem of flow rate is solved by trial, using a 

successive approximation procedure.  This is because both Re 

and f(Re) depend on the unknown velocity, V.  The solution is 

as follows: 

 

1) solve for V using an assumed value for f and the Darcy-

Weisbach equation. 
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     known from  note sign. 

      given data. 

 

2) using V compute Re 

3) obtain a new value for f = f(Re, ks/D) and repeat as 

above until convergence 

 

Or can use Re 
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3. Determine the size of the pipe. 

 

The third problem of pipe size is solved by trial, using a 

successive approximation procedure.  This is because hf, f, and 

Q all depend on the unknown diameter D.  The solution 

procedure is as follows: 

 

1) solve for D using an assumed value for f and the Darcy-

Weisbach equation along with the definition of Q 
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2) using D compute Re and ks/D 

 

3) obtain a new value of f = f(Re, ks/D) and repeat as above 

until convergence 
 

4. Determine the pipe length. 

 

The fourth problem of pipe length is solved by obtaining f 

from the Moody diagram, using values of Re and ks/D 

computed from the given data.  Then using given hf, V, D, and 
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For real pipe systems in addition to friction head loss there are 

additional losses called minor losses due to 
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Centrifugal 

acceleration 
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Abrupt Expansion 

Consider the flow from a small pipe to a larger pipe.  Would like 

to know hL = hL(V1,V2).  Analytic solution to exact problem is 

extremely difficult due 

to the occurrence of flow 

separations and 

turbulence.  However, if 

the assumption is made 

that the pressure in the 

separation region 

remains approximately 

constant and at the value 

at the point of 

separation, i.e., p1, an approximate solution for hL is possible: 

 

Apply Energy Eq from 1-2 (1 = 2 = 1) 
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Momentum eq. For CV shown (shear stress neglected) 
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next divide momentum equation by A2 
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÷ A2 
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If V2 << V1, i.e., if 𝐴2 → ∞ (𝑉2 =
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Determine 𝑄 depending on 

valve open or closed: parallel 

pipes between two reservoirs 

with minor losses. 
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