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Chapter 6: Viscous Flow in Ducts

6.4 Turbulent Flow in Pipes and Channels using mean-
velocity correlations.

1. Smooth circular pipe

Recall laminar flow exact solution:

f = 82"’ =64/Rey Re, = Uyed <2000
Pave v

A turbulent flow “approximate” solution can be obtained
simply by computing Uave based on log law.

U_Lpwg

u K Vv

Where:
u=u(y); k=041, B=5; u*=,1,/p; y=R-—r

Q 1 (® 11 yu
V=uave=z=m ) u [ElnT-FB]ZTL'T' dr

1 2 Ru” 3
=—-u’ (—ln—+ 2B ——)
2 K % K
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or: V(YT @y
' . v\ ) "V
v Ru Ru* 05Vdu* 1 Y2
f‘2'44|n7+1'34 = =~ Reg (g)

f 2 =1.99log[Re, f"*]-1.02
=2log[Re, f*?]-0.8 ~_,
EFD Adjusted constants.
f only drops by a factor of 5 over 4x10° < Re < 108

Since f equation is implicit, it is not easy to see dependency
onp, W, V,and D

N -1/4 4000 < Rep < 10°
f (pipe) =0.316Rep Blasius (1911) power law

curve fit to data.

2
h, = Ap _ L
y D 2g
Turbulent Flow: Ap = 0.158Lp3/*u/4p=5/4y7/4
I T ¥ Nearly quadratic
(As expected)

Only slightly ~ Drops with pipe

Nearly linear with 1 diameter.

_ 0-241|—,03/4,Ul/4 D—4.75Q1.75

Laminar flow: Ap = 128uLQ /mD*
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Ap (turbulent) decreases more sharply with D than Ap (laminar)
for same Q; therefore, increase D for smaller Ap, although large
D more expensive. 2D decreases Ap by 27 for same Q.

Fall 2024

r= 1. R
ume:u( *O) _I u +B
u u K 0,
Combine with
V_1,R0 g 3
u K ¥ K
vV oou,, T U, 3u”
= —=— =V =U_, — — =1+ —
u u K 2K V 2KV
Also
*2 *
ou u
T, = and f = — f = = —=,/f/8
= /8,0V2 1/8pV*
Upnax 3u”
- —

Or:

For Turbulent Flow:

y ]A~ZR7—1+——q/f/ =1+1.3,/f

Y 13T

max

Recall laminar flow:
V /Uy =05

oy vy
I

WY

Al

whowd

AN
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TABLE 10.1 EXPONENTS FOR POWER-LAW EQUATION AND
RATIO OF MEAN TO MAXIMUM VELOCITY

Re— 4 x 10° 2.3 x 10* 1.1 x 10° 1.1 % 10° 3.2 x 10°
1 1 1 1 ]
m— e S ey e —
_ 6.0 6.6 7.0 8.8 10.0
V/Viax — 0.791 0.807 0.817 0.850 0.865

—— - -

source: Schlichting (36). Used with permission of the McGraw-Hill Companies.

Power law fit to velocity profile:
2 I
o elge &

U max 7

-
o

m = m(Re)

o

N8

104 10° 108
VD
Re= "
MFIGURE 8.7 Exponent, #, for power-law velocity profiles.
(Adapted from Ref. 1.)
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2. Turbulent Flow in Rough circular pipe

Experiments: roughness height k forces log law outward on

. ku* .
abscissa by amount In k™ where k™ = : with same slope

%Which causes B to be reduced by AB(k*) ~ i In k*.

0.10

0.08

€ -—
o e 0.0333

0.06 —

Tl e -
0.0163
e oty 3 0 kil

0.00833

W

J
\ 64 0.00198

w

\
> Eq. (6.38)
Eq. ((1.3911.;'%(1} =
R

Tty

0.04 —

’—-
=
o

a

0.02 —

0.01 | ! '

(b)

Fig. 6.12 Effect of wall roughness on turbulent pipe flow. (a) The logarithmic overlap
velocity profile shifts down and to the right; (&) experiments with sand-grain roughness by
Nikuradse [7] show a systematic increase of the turbulent friction factor with the roughness
ratio.

Laminar flow unaffected, but for turbulent flow the effects
of roughness initiate for lower Req = VVd/v as k/d increases.
For all k/d, the friction factor becomes constant (fully
rough) at high Reg:

1. k<5 hydraulically smooth
2. 5<k"<70 transitional roughness (Re dependence)
3. k">70 fully rough (no Re dependence)

For fully rough flow:
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AB(k*) ~—Ink" - 35

And log law modified for roughness becomes:
ut = %lny+ + B —AB(k™) :%lny/k + 8.5

I.e., Independent viscosity/Req. Integration for Uae =V
provides:

l* = 2.44lng + 3.2 or f—1/2: —2log k/d (fully rough flow)
u k 3.7

There is no Req effect; therefore, head loss varies as V2 and
f increases 9 times as k/d increases by factor 5000.
Combining smooth and fully rough friction factor formulas
to include transitionally rough regime produces the

Colebrook-White equation, i.e., Moody diagram:

frz=-2log|37 1

1 [g + 251 ] Moody diagram
Req f 2

Approximate explicit
formula

~—1.8l0g ﬁ-l_
d

6.9 (k/d)l'“
3.7

Moody accuracy £15% for its full range and explicit within
2% Moody.
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Values of (Vd) for water at 60°F (velocity, ft/s x diameter, 1n)
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There are basically four types of problems involved with
uniform flow in a single pipe:

Givend, L, and V or Q, p, i, and g, compute the head loss hf- (head loss problem).

Given d, L, hy, p, j, and g, compute the velocity V or flow rate O (flow rate
problem).

Given Q, L, hy, p, i, and g, compute the diameter d of the pipe (sizing problem).
Given Q, d, hy, p, |, and g, compute the pipe length L.

Determine the head loss.

The first problem of head loss is solved readily by obtaining f
from the Moody diagram, using values of Re and ks/D
computed from the given data. The head loss hf is then
computed from the Darcy-Weisbach equation.

f = f(Rep, k¢/D)

2
hf:fLV_:Ah Ah:(zl—zz)n{&—&j
D 2¢g Yo7

{2

Rep = ReD(V, D)
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2. Determine the flow rate.

The second problem of flow rate is solved by trial, using a
successive approximation procedure. This is because both Re
and f(Re) depend on the unknown velocity, V. The solution is
as follows:

1) solve for V using an assumed value for f and the Darcy-
Weisbach equation.

v :|:29hf Tz f-L2
L/D

\%{—/

known from note sign.
given data.

2) using V compute Re
3) obtain a new value for f = f(Re, ks/D) and repeat as
above until convergence

D3/2 Zghf Jl/Z

Or can use Re f"* = [
1% L

scale on Moody Diagram

1) retv2 | 1) compute and ks/D
2) read f

2
3) solve V from h; :fEV—
D 29

4)Q =VA
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3. Determine the size of the pipe.

The third problem of pipe size is solved by trial, using a
successive approximation procedure. This is because hs, f, and
Q all depend on the unknown diameter D. The solution
procedure is as follows:

1) solve for D using an assumed value for f and the Darcy-
Weisbach equation along with the definition of Q

a 02 T

D:|: 2Q :| -f1/5
nogh
%{—/

known from
given data.

2) using D compute Re and ks/D

3) obtain a new value of f = f(Re, ki/D) and repeat as above
until convergence

4. Determine the pipe length.

The fourth problem of pipe length is solved by obtaining f

from the Moody diagram, using values of Re and ks/D

computed from the given data. Then using given hy, V, D, and
_ 29 Dh;

calculated f to solve L from L_\? —
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10.5 Flow at Pipe Inlets and Losses From Fittings

For real pipe systems in addition to friction head loss there are
additional losses called minor losses due to

1. entrance and exit effects
. + can be
2. expansions and contractions |
... > large
3. bends, elbows, tees, and other fittings -
, : eftect
4. valves (open or partially closed) )

For such complex geometries we must rely on experimental
data to obtain a loss coefficient

h .
K=-2 ¥ head loss due to minor losses
AV

20

In general,

K = K(geometry, Re, /D)
-
dependence usually
not known

Loss coefficient data 1s supplied by manufacturers and also
listed in handbooks. The data are for turbulent flow
conditions but seldom given in terms of Re.
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Modified Energy Equation to Include Minor Losses:
1 >
Pi, z, +—a, Vi +h, _P2 Z,+—o,V; +h, +h: +>h,
Y 2g Y 2¢g /
V2
h, =K—
2g
Note: Xh,, does not include pipe friction and e.g. in elbows
and tees, this must be added to hy.
1. Flow in a bend:
&=\ N I 2 1 op
\ B
\ A 1 p Cr
< %fT\’
\ 8, e \ / Centrifugal
) \ acceleration
(A ¢ ° r,va;,- rg
”Hhrh\) !f} [2 O ~
B=0. /
1.e. o > (0 which 1s an adverse pressure gradient in r
o

direction. The slower moving fluid near wall responds first
and a swirling flow pattern results.

C) This swirling flow represents an
¢ o energy loss which must be added
@ to the hy.
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Also, flow separation can result due to adverse longitudinal
pressure gradients which will result in additional losses.

.
D) e
2

1o \So o

4 A, Sl

This shows potential flow is not a good approximate in
internal flows (except possibly near entrance)
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2. Valves: enormous losses

Y]

. Entrances: depends on rounding of entrance

4. Exit (to a large reservoir): K =1
1.e., all velocity head is lost

5. Contractions and Expansions

sudden or gradual
\—.v_/

theory for expansion:

- (2
(Vl B Vq )2 O
h, = =
2g
from continuity, momentum, and energy
(assuming p = p; in separation pockets)
d>)  h
— KSE _ 1__2 — 2m
D~ Vi
2g
no theory for contraction:
d2 | L—
KSC :.42 l_ - [ - .
i, - L | [ —
D™ N
—_— Vo C#*\*J‘—J:R,

from experiment



058:0160 Chapter 6-part4
Professor Fred Stern  Fall 2024 16

Abrupt Expansion

Consider the flow from a small pipe to a larger pipe. Would like
to know h. = h(V1,V2). Analytic solution to exact problem is
extremely difficult due
to the occurrence of flow
separations and
turbulence. However, if
the assumption is made
that the pressure in the
separation region
remains approximately
constant and at the value
at the point of
separation, 1.e., p1, an approximate solution for h. is possible:

Apply Energy Eq from 1-2 (o1 = a2 = 1)

2 2
&+21+V—1:p—2+22 +V—2+hL
Y 29 v 29

Momentum eg. For CV shown (shear stress neglected)
2R =pA; =P A, - Wsing =3 puV-A

/ =PV (-VIA,) +pV, (V,A,)
yAng =pV; A, —pVPA
——

Wsino

next divide momentum equation by yA;
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P1 P2 sz V12 Aq
+ 1A ————(z;—21) =——
y v 4 YT g g4

— 7
~—

from energy equation

V_22_V_12_|_h _V22_V12A1
29 29 - g g A,
2 2
N VB VE() 2A

20 29 A,

( . .
= i{vzz RV %} continuity eq.

2g ) V1A1:V2A2
—— A _Vy
2ViV, | A2 M
1 2
h, =—[V, -V
=gV

If Vo << V4, ie., if A, — oo (Vz _ ﬁvl)
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—————— Control volume
____dZ=

v, b

(1) {
c
@

¥ Figure 8.27 Control volume used to calculate the loss coefficient for a
sudden expansion.

|
ST

S‘

/

1.0
08} s
0.6 |~ [UUSHSUISES WSSy SPas: SO
KL

0.4 |-

0.2

0 0.2 0.4 0.6 08 1.0 @ Figure 8.26 Loss coefficient for
AyAy a sudden expansion (Ref. 10).

In many ways, the flow in a sudden expansion is similar to exit flow. As is indicated in Fig.
8.27, the fluid leaves the smaller pipe and initially forms a jet-type structure as it enters the larger
pipe. Within a few diameters downstream of the expansion, the jet becomes dispersed across the
pipe, and fully developed flow becomes established again. In this process [between sections (2) and
(3)] a portion of the kinetic energy of the fluid is dissipated as a result of viscous effects. A square-
edged exit is the limiting case with A, /A, = 0.

A sudden expansion is one of the few components (perhaps the only one) for which the loss
coefficient can be obtained by means of a simple analysis. To do this we consider the continuity
and momentum equations for the control volume shown in Fig. 8.27 and the energy equation
applied between (2) and (3). We assume that the flow is uniform at sections (1), (2), and (3) and the
pressure is constant across the left side of the control volume (p, = pp = P = p1)- The resulting
three governing equations (mass, momentum, and energy) are

AV, = A3V
PiAs — pA; = pAsVs(Vs — V)

W loss coefficient and
w @ sudden 2 2
ion can B_'+‘_/l=£3_+z3_
theoretically ry 2 v 2
weulated.

+ hy

These can be combined to give the loss coefficient, K, = h;/ (V3/2g), as

r=(1-2)
L A,

where we have used the fact that A, = A;. This result, plotted in Fig. 8.26, is in good agreement
with experimental data. As with so many minor loss situations, it is not the viscous effects directly

(i.e., the wall shear stress) that cause the loss. Rather, it is the dissipation of kinetic energy (anot
type of viscous effect) as the fluid decelerates inefficiently. IR
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Data:
® dy/d,=033
e =0.50[16]
Fig. 6.23 Flow losses in a gradual

| @nicaliexpansio region, as 00 | . . i .
calculated from Gibson's suggestion 0 10 s
(15, 50], Eq. (6.80), for a smooth wall. Total cone angle 26, degrees

1 Vo@.«.ﬁ% V('W\p_ A W4wk,wz JJX\M

‘; ML o doee _Loug s Aisa "N B N
| Yo Acprsdion . TS wlix
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i
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i~ WA W} ® (1= \ & e 7 -1 R C
z., WA V\L/L Q—Aﬂ\ D"" } S AM =

v S e
bd‘hf\ W :Lo-&-\ & g‘, , qp"&l
| e R
MW“}MW\ Ao $*Z2a ¢ o 26 L.5° to .)\-(N\l/\w
VR
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Separated flow

Vena contracta
O Yim(Qm—rm——e—¥

(1) //;r @ y,>v, (3)

Flow separation

at corner
(@)
n I Ideal full recovery V3
5 of kinetic energy 2
faid S o — 2
3 —— V3
- K=o
P = 2
Actual P3
x X X3 X
(b)

[ Figure 8.23 Flow pattern and pressure distribution for a sharp-edged entrance.

Sharp-edged iV
entrance \,\/
E——

0.5¢

0.6

0.4

k; 03

0.2

0.1

0 0.05 0.1 i Figure 8.24 Entrance loss coefficient
as a function of rounding of the inlet edge
(Data from Ref. 9).

ol~
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0.6
e %
i 2
Al_/r__ Ay lx,__KLZ;
[177] IS—
Kl,
0.2 =
0
0 0.2 0.4 0.6 08 L0 = Figure 8.25 Loss coefficient for
AglAy a sudden contraction (Ref. 10).
1.4
00 30 60 90 120 150 180
6, degrees
B Figure 8.28 Loss coefficient for a typical conical diffuser (Ref. 5).
1.0 .
Guide vanes
b b ]
Separated flow $
: N
5 YY) =
a a
Secondary
flow
0.6
o W
K, Primary T K, =02
flow
0.4 e (a) (b)
0.2
I Figure 8.30 Character of the flow in a 90°
mitered bend and the associated loss coefficient:
(a) without guide vanes, (b) with guide vanes.
0
0 2 4 6 8 10 12
RID
[ Figure 8.29 Character of the flow in a 90° bend and the associated loss
coefficient (Ref. 5).
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FIGURE 10. 10
Flow characteristics ai a
pipe inlet (not to scale).
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TABLE 10.2 LOSS COEFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS

Additional
Description Sketch Data K Source
4 rd K, Q)
Pipe entrance N 0.0 0.50
0.1 0.12
h,= K. V/2g { Q =0(.2 0.03
Kc K¢
Contraction D./D, 8 =60 §=I180° (2)
Dy 0.0 0.08 0.50
—.——7\_]722 020  0.08 0.49
R 6 0.40 0.07 0.42
—t 060  0.06 0.27
0.80 0.06 0.20
hy = KcVif2g 0.90 0.06 0.10
Expansion " D,/D, 6=20° 0=180" (2)
oo 0.0 1.00
%"-"e 5, 020 030 0.87
—r-t ) 0.40 0.25 0.70
0.60 0.15 .41
h, = KeVif2g 0.80 0.10 0.15
Vanes Without
vanes K, =11 (37)
90° miter bend
With
vanes K,=0.2 (37)
rid (5)
and
= .35 1
90° smooth ]2 Ko 3 31' 9 (19)
bend 4 D-I 6
6 0.21
8 0.28
10 0.32
Globe valve—wide open K, = 100 (37)
Angle valve—wide open K.= 5.0
Gate valve-—wide open K.,= 02
Gate valve —half open K,= 56
Thnlaaded Return bend Ky= 22
lpl'pc Tee
fittings straight-through flow K,= 04
side-outlet flow K, = 18
90° elbow Ky= 09
457 elbow K,= 04

*Reprinted by permission of the American Society of Heating, Refrigerating and Air Conditionir

Engineers, Atlanta, Georgia, from the 1981 ASHRAE Handbook-Fundamentals.
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FIGURE 10. 14 i
—_— Veld Steeper gradient in the EGL due to
EGL and HGL at a turbulence produced at the entrance
sharp-edged pipe B =[
enfrance,
EGL
Drop in the HGL
due to high
velocity in flow
just downstream
|_ of entrance
P
HGL=—+4+2z
Y
P v? v?
EGL=—+z+-—=HGL+ —
Y 29 29
iy, due 1o
entrance
V2
2g
} hy, due to partially
closed valve
ead losses in a pipe. Lo — e —
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Fig. 6.24 Examples of multiple-

pipe systems: (a) pipes in series; @
5) pipes in parallel; (¢} the three-

PEservoir junction problem.

(Dz=25m

@ Z=0m

Water 10+

o m

at 20°C Np— .

L=100m >/

A C | 30m

|

L=70m

. i Valve
Determine @ depending on
valve open or closed: parallel

pipes between two reservoirs
with minor losses.
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Fig. 6.25 Schematic of a piping
network.

T

Pipe Networks

The ultimate case of a multipipe system is the piping network illustrated in
Fig. 6.25. This might represent a water supply system for an apartment or
subdivision or even a city. This network is quite complex algebraically bue
follows the same basic rules:

1. The net flow into any junction must be zero.

2. The net pressure change around any closed loop must be zero. In other
words, the HGL at each junction must have one and only one elevation.

3. All pressure changes must satisfy the Moody and minor-loss friction il
correlations. ‘

By supplying these rules to each junction and independent loop in the network, ome
obtains a set of simultancous equations for the flow rates in cach pipe leg and the
HGL (or pressure) at each junction. Solution may then be obtained by numerical
iteration, as first developed in a hand calculation technigue by Prof. Hardy Cross is
1936 [17). Computer solution of pipe network problems is now quite common aad
is covered in at least one specialized text [18). Network analysis is quite useful ﬁr"‘
real water distribution systems if well calibrated with the actual system head loss data




