7.4 Momentum Integral Methods

Historically similarity and other AFD methods used for idealized flows and momentum integral methods for practical applications, including pressure gradients, but failure 3D methods motivated 3D BL theory which quickly progressed to modern day CFD.

Momentum integral equation, which is valid for both laminar and turbulent flow:

$$\int_{y=0}^{\infty} (\text{steady flow BL equation } + (u - U) \text{continuity}) \, dy$$

$$\frac{\tau_w}{\rho U^2} = \frac{1}{2}C_f = \frac{d\theta}{dx} + (2+H)\frac{\theta}{U}\frac{dU}{dx}$$

For flat plate equation $\Rightarrow \frac{dU}{dx} = 0$

$$\theta = \int_0^\delta \frac{u}{U} \left(1 - \frac{u}{U} \right) dy$$

$$\delta^* = \int_0^\delta \left(1 - \frac{u}{U}\right) dy$$

$$H = \frac{\delta^*}{\theta}$$

Momentum:
$$uu_x + vu_y = -\frac{\partial}{\partial x} \left(\frac{p}{\rho}\right) + \frac{1}{\rho} \frac{\partial \tau}{\partial y}$$
 where $\tau = \mu \frac{\partial u}{\partial y}$

The pressure gradient evaluated form the outer potential flow using Bernoulli equation.

$$p + \frac{1}{2}\rho U^2 = \text{constant}$$

$$p_x + \frac{1}{2}\rho 2UU_x = 0$$

$$-p_x/\rho = UU_x$$

$$(u - U)\underbrace{(u_x + v_y)}_{Continuity} = uu_x + uv_y - Uu_x - Uv_y$$

$$\underbrace{uu_x + vu_y - UU_x - \frac{1}{\rho}\tau_y}_0 + \underbrace{uu_x + uv_y - Uu_x - Uv_y}_0 = 0$$

$$-\frac{1}{\rho}\tau_y = -2uu_x - vu_y + UU_x - uv_y + Uu_x + Uv_y$$
$$= \frac{\partial}{\partial x}(uU - u^2) + (U - u)U_x + \frac{\partial}{\partial y}(vU - vu)$$

$$\int_{0}^{\infty} -\frac{1}{\rho} \tau_{y} dy = -(\tau_{w}^{0} - \tau_{w})/\rho = \frac{\partial}{\partial x} \int_{0}^{\infty} u(U - u) dy + U_{x} \int_{0}^{\infty} (U - u) dy + (vU - vu) \Big|_{0}^{\infty}$$

$$\frac{\tau_w}{\rho} = \frac{\partial}{\partial x} \left[U^2 \int_0^\infty \frac{u}{U} \left(1 - \frac{u}{U} \right) dy \right] + U_x U \int_0^\infty \left(1 - \frac{u}{U} \right) dy$$

$$= U^2 \theta_x + 2UU_x \theta + UU_x \delta^*$$

$$\frac{\tau_w}{\rho U^2} = \frac{1}{2}C_f = \theta_x + (2\theta + \delta^*)\frac{1}{U}\frac{dU}{dx}$$

$$\frac{C_f}{2} = \frac{d\theta}{dx} + (2 + H)\frac{\theta}{U}U_x$$

	Medrole Solution Momentum Integal Equation
	Historically two approaches:
	(I) One parameter velocy tofter
	(I) One parameter velocy tofter (2) Emperical correlations & thuritar method
	(1) Karmon - Pohl hausen Websen
-	2 74/4 -) = TT(x) (F + 1 = 1 (x)]
2	(1) 21(x,y)= U(x) f [3/5, -L(x)] guess form velocy tropile
	いか= マターマッキャナ + 17(1-7)3] カンサイを
	@ wer 2 Br 21/2 25 2x
	6 compute: 0,5°, H, Tw = Polyhaman
7 00	@ Sustitute momentum integel promoter
	equation for 1st order DDE 5(x)
	D with 5(x) known all writter also known
	1
	According not as good Thwriter making
	Issuer:
	Recall any quadratic great printe.
	Slat year velong profile ony 100% accounty.
	Hours depende type of guerral profile.

	TABLE 41										
	Boundary-lay	er predicti	ions from	five piece	wise analy	tic profile	with their	errors			
	relative to the $\frac{u}{U} = F(\xi)$			$H = \frac{\delta^{*}}{\theta}$	$\frac{\delta}{x} \sqrt{R\epsilon_x}$	$C_f \sqrt{Re_s}$	$\frac{\delta^{9}}{X}\sqrt{Re_{z}}$	L ₂ error		1	
	$2\xi - \xi^2$	0.333 3.1%	0.133 0.25%	2.500 3.5%	5.477 9.5%	0.730 10%	1.826	0.020	L2=	[](===) sty
2	$\frac{3}{2}\xi - \frac{1}{2}\xi^{3}$	0.375 9.0%	0.139 4.7%	2.692 4.0%	4.641 7.2%	0.646 2.6%	1.740	0.034			
3	$2\xi-2\xi^3+\xi^4$	0.300 13%	0.118 12%	2.554 1.4%	5.836 17%	0.685 3.2%	1.751 1.8%	0.054			
ŧ	$\sin(\frac{1}{2}\pi\xi)$	0.363 5.6%	0.137 2.7%	2.660 2.7%	4.795 4.1%	0.655 1.3%	1.743 1.3%	0.021			
5	$\frac{3}{5}\xi - \xi^3 + \frac{1}{3}\xi^4$	0.350 1.7%	0.134 0.52%	2.618 1.1%	4.993 0.13%	0.668 0.53%	1.748 1.6%	0.008			
	Blasius (1908)	0.344	0.133	2.59	5	0.664	1.72	n/a			
1		5 Pohl L	· W	ing de l		Xue	(202		رو, # d	t in	ile
		Poher	M	fare	and I	Mue Con	sider Sider		ie, # &	t iny	ine.
		Poher	MIX	10 = C	and I	When con area to sti	sider or of		(e, # &	t iny	ile we
		Poher	M(x)	10)=0 10)=0 15)=1	out I	Mue con acco no sti	2 mm 3			t iny	ue we
		Poher	M(x)	(x,0) = 0 (x,0) = 1 (x,0) =	oling:	Muer Con and No Sti Smis	soder in	order,	· Wignes	hum y	,=o
		Poher	M(x)	(x,0) = 0 (x,0) = 1 (x,0) =	oling:	Muer Con and No Sti Smis	soder in	order,	· Wignes		,=o
		Poher.	My My	(x,5)=1 (x,5)=1 (x,5)=1	oling:	Muer Con Mo Sti Mater Smis	of the state of th	order of	. Wewen	hum y	,=o
		Poher.	M(X)	(x,5)= (x,5)= (x,5)= (x,5)=	- Px 1	Muer Con Mo Sti Mater Smo	solved of the so	order,	. momen o Shee	hum y	,=o
		Poher.	MIX My My My My	(x,5)=1 (x,5)=1 (x,5)=1 (x,5)=1 (x,5)=1 (x,5)=1	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Muer Con Mo Shi Smo Corres	solver of solver of the solver	order,	. momen o shee wer v	hum y	,=o
		Poher.	MIX My My My My	(x,5)=1 (x,5)=1 (x,5)=1 (x,5)=1 (x,5)=1 (x,5)=1	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Muer Con Mo Shi Smo Corres	solver of solver of the solver	order,	. momen o Shee	hum y	,=o

058:0160 Chapter 7.4

Thwaites Method (1949)

Pressure gradient parameter $\lambda = \frac{\theta^2}{\nu} \frac{dU}{dx} = (\frac{\theta}{\delta})^2 \Lambda$ where $\Lambda = \frac{\delta^2}{\nu} \frac{dU}{dx} = -p_x \frac{\delta^2}{uU}$ is the Pohlhausen parameter.

Multiply momentum integral equation by $\frac{U\theta}{v}$

$$\frac{\tau_w \theta}{\mu U} = \frac{U \theta}{v} \frac{d \theta}{d x} + \frac{\theta^2}{v} \frac{d U}{d x} (2 + H)$$

The equation is dimensionless and, LHS and H can be correlated with λ as shear and shape-factor correlations:

$$\frac{\tau_w \theta}{uU} = S(\lambda) = (\lambda + 0.09)^{0.62}$$

$$H = \delta^*/\theta = H(\lambda) = \sum_{i=0}^{5} a_i (0.25 - \lambda)^i$$

$$a_i = (2, 4.14, -83.5, 854, -3337, 4576)$$

Note

$$\frac{U\theta}{v}\frac{d\theta}{dx} = \frac{1}{2}U\frac{d}{dx}\left(\frac{\theta^2}{v}\right)$$

Substitute above into momentum integral equation.

$$S(\lambda) = \frac{1}{2}U\frac{d}{dx}\left(\frac{\theta^2}{\nu}\right) + \lambda(2+H)$$

$$U\frac{d(\lambda/U_x)}{dx} = 2[S - \lambda(2 + H)\lambda] = F(\lambda)$$

Chapter 7.4 Professor Fred Stern Fall 2024

$F(\lambda) = 0.45 - 6\lambda$ based on AFD and EFD

FIGURE 4-27 Empirical correlation of the boundary-layer function in Eq. (4-156). [After Thwaites (1949).]

Define
$$z = \frac{\theta^2}{v}$$
 so that $\lambda = z \frac{dU}{dx}$

$$U\frac{dz}{dx} = 0.45 - 6\lambda = 0.45 - 6z\frac{dU}{dx}$$

$$U\frac{dz}{dx} + 6z\frac{dU}{dx} = 0.45$$

$$\frac{1}{U^5} \frac{d}{dx} (zU^6) = U \frac{dz}{dx} + 6z \frac{dU}{dx} = 0.45$$

$$d(zU^6) = 0.45U^5dx$$

$$zU^6 = 0.45 \int_0^x U^5 dx + C$$

 $\theta_0(x=0) = 0$ and U(x) known from potential flow solution.

Complete solution:

$$\lambda = \lambda(\theta) = \frac{\theta^2}{\nu} \frac{dU}{dx}$$
$$\frac{\tau_w \theta}{\mu U} = S(\lambda)$$
$$\delta^* = \theta H(\lambda)$$

Accuracy: mild $p_x \pm 5\%$ and strong adverse p_x (τ_w near 0) $\pm 15\%$

TABLE 4-8

Shear and shape functions correlated by Thwaites (1949)

λ	$H(\lambda)$	$S(\lambda)$	λ	$H(\lambda)$	$S(\lambda)$
+0.25	2.00	0.500	-0.056	2.94	0.122
0.20	2.07	0.463	-0.060	2.99	0.113
0.14	2.18	0.404	-0.064	3.04	0.104
0.12	2.23	0.382	-0.068	3.09	0.095
0.10	2.28	0.359	-0.072	3.15	0.085
+0.080	2.34	0.333	-0.076	3.22	0.072
0.064	2.39	0.313	-0.080	3.30	0.056
0.048	2.44	0.291	-0.084	3.39	0.038
0.032	2.49	0.268	-0.086	3.44	0.027
0.016	2.55	0.244	-0.088	3.49	0.015
0.0	2.61	0.220	-0.090	3.55	0.000
				(Separation)	
-0.016	2.67	0.195			
-0.032	2.75	0.168			
-0.040	2.81	0.153			
-0.048	2.87	0.138			
-0.052	2.90	0.130			

058:0160 Chapter 7.4
Professor Fred Stern Fall 2024 9

Separation predicted within 4%; however, large scale separation causes viscous/inviscid interaction and alters imposed external U(x) and $p_x(x)$

TABLE 4-9

Laminar-separation-point prediction by Thwaites' method

		Thwaites		
U(x)	x_{sep} (exact)	x_{sep}	Error [%]	
Howarth (1938)			The state of the s	
1-x	0.120	0.123	+2.5	
Tani (1949)		Vi 400-100-00	12.5	
$1 - x^2$	0.271	0.268	-1.1	
$1 - x^4$	0.462	0.449	-2.8	
$1 - x^8$	0.640	0.621	-3.0	
Terrill (1960)			5.0	
$\sin(x)$	1.823	1.800	-1.3	
Curle (1958)			1.5	
$x-x^3$	0.655	0.648	-1.1	
Görtler (1957)			1.1	
cos(x)	0.389	0.384	-1.3	
$(1-x)^{1/2}$	0.218	0.221	+1.3	
$(1-x)^2$	0.0637	0.0652	+2.4	
$(1+x)^{-1}$	0.151	0.158	+4.6	
$(1+x)^{-2}$	0.0713	0.0739	+3.6	

Pohlhausen Velocity Profile:

$$\frac{u}{U} = f(\eta) = a\eta + b\eta^2 + c\eta^3 + d\eta^4 \text{ with } \eta = \frac{y}{\delta}$$

a, b, c, d determined from boundary conditions:

1)
$$y = 0 \rightarrow u = 0$$
, $u_{yy} = -\frac{u}{v}U_x$

2)
$$y = \delta \rightarrow u = U$$
, $u_y = 0$, $u_{yy} = 0$

$$\Rightarrow \frac{u}{U} = F(\eta) + \Lambda G(\eta), -12 \le \Lambda \le 12 \quad \Lambda = \frac{\delta^2}{\nu} \frac{dU}{dx} = -p_x \frac{\delta^2}{\mu U}$$
separation (experiment: $\Lambda_{separation} = -5$)

$$F(\eta) = 2\eta - 2\eta^3 + \eta^4$$

$$G(\eta) = \frac{\eta}{6} (1 - \eta)^3$$

$$\lambda = \lambda(\Lambda) = \left(\frac{37}{315} - \frac{\Lambda}{945} + \frac{\Lambda^2}{9072}\right) \Lambda$$

Profiles are realistic, except near separation. In guessed profile methods u/U directly used to solve momentum integral equation numerically, but accuracy not as good as empirical correlation methods; therefore, use Thwaites method to get λ , etc., and then use λ to get Λ and plot u/U.

Professor Fred Stern Fall 2024

Howarth linearly decelerating flow (example of exact solution of steady state 2D boundary layer)

Howarth proposed a linearly decelerating external velocity distribution $U(x) = U_0 \left(1 - \frac{x}{L}\right)$ as a theoretical model for laminar boundary layer study. Use Thwaites's method to compute:

b)
$$C_f\left(\frac{x}{L}=0.1\right)$$

Note $U_x = -U_0/L$

Solution

$$\theta^{2} = \frac{0.45\nu}{U_{0}^{6} \left(1 - \frac{x}{L}\right)^{6}} \int_{0}^{x} U_{0}^{5} \left(1 - \frac{x}{L}\right)^{5} dx = 0.075 \frac{\nu L}{U_{0}} \left[\left(1 - \frac{x}{L}\right)^{-6} - 1 \right]$$

can be evaluated for given L, ReL

$$\lambda = \frac{\theta^2}{\nu} \frac{dU}{dx} = -0.075 \left[\left(1 - \frac{x}{L} \right)^{-6} - 1 \right]$$
$$\lambda_{sep} = -0.09 \Rightarrow \frac{X_{sep}}{L} = 0.123$$

3% higher than exact solution =0.1199

$$C_f\left(\frac{x}{L} = 0.1\right)$$
 i.e. just before separation

$$\lambda = -0.0661$$
 $S(\lambda) = 0.099 = \frac{1}{2}C_f Re_{\theta}$
 $C_f = \frac{2(0.099)}{Re_{\theta}}$

Compute Re_{θ} in terms if Re_{L}

$$\theta^{2} = 0.075 \frac{vL}{U_{0}} \left[(1 - 0.1)^{-6} - 1 \right] = 0.0661 \frac{gL}{U_{0}}$$

$$\frac{\theta^2}{L^2} = 0.0661 \frac{vL}{U_0} = \frac{0.0661}{\text{Re}_L}$$

$$\frac{\theta}{L} = \frac{0.257}{\text{Re}_L^{1/2}}$$

$$\operatorname{Re}_{\theta} = \frac{\theta}{L} \operatorname{Re}_{L} = 0.257 \operatorname{Re}_{L}^{\frac{1}{2}}$$

$$C_f = \frac{2(0.099)}{0.257} \text{Re}_L^{-1/2} = 0.77 \,\text{Re}_L^{-1/2}$$

To complete solution must specify Re_L

Consider the complex potential

$$F(z) = \frac{a}{2}z^2 = \frac{a}{2}r^2e^{2i\theta}$$

$$\varphi = \operatorname{Re}[F(z)] = \frac{a}{2}r^2\cos 2\theta$$

$$\psi = \operatorname{Im}[F(z)] = \frac{a}{2}r^2 \sin 2\theta$$

Orthogonal rectangular hyperbolas

 φ : asymptotes $y = \pm x$

 ψ : asymptotes x=0, y=0

$$\underline{V} = \nabla \varphi = \varphi_r \hat{e}_r + \frac{1}{r} \varphi_\theta \hat{e}_\theta$$

$$v_r = ar\cos 2\theta$$

$$v_r = -ar\sin 2\theta$$

 $\begin{cases} \underline{V} = \nabla \varphi = \varphi_r \hat{e}_r + \frac{1}{r} \varphi_\theta \hat{e}_\theta & \hat{e}_\theta = \frac{1}{r} \varphi_\theta \hat{e}_\theta \\ v_r = ar \cos 2\theta \\ v_\theta = -ar \sin 2\theta \end{cases}$ $\begin{cases} \frac{\pi}{2} \le \theta \le 0 \text{ (flow direction as shown)} \end{cases}$

$$\underline{V} = v_r \left(\cos \theta \hat{i} + \sin \theta \hat{j} \right) + v_\theta \left(-\sin \theta \hat{i} + \cos \theta \hat{j} \right) =$$

$$\left(v_r \cos \theta - v_\theta \sin \theta \right) \hat{i} + \left(v_r \sin \theta + v_\theta \cos \theta \right) \hat{j}$$

$$(v_r \cos \theta - v_\theta \sin \theta) \hat{i} + (v_r \sin \theta + v_\theta \cos \theta) \hat{j}$$

Potential flow slips along surface: (consider $\theta = 90^{\circ}$)

- determine a such that $v_r = U_0$ at r=L, $\theta = 90^\circ$ $v_r = aL\cos(2\times90) = U_0 \Rightarrow aL = -U_0, \text{ i.e. } a = -\frac{U_0}{L}$ $v_r = uL(x) = uL(x)$ 1) determine a such that $v_r = U_0$ at r=L, $\theta = 90^{\circ}$
- 2) let $U(x) = v_r$ at x=L-r: $\Rightarrow v_r = a(L-x)\cos(2\times90) = U(x)$

Or:
$$U(x) = -a(L-x) = \frac{U_0}{L}(L-x) = U_0(1-\frac{x}{L})$$
 $U_X = -\frac{U_0}{L}$

3-D Integral methods

Momentum integral methods perform well (i.e. compare well with experimental data) for a large class of both laminar and turbulent 2D flows. However, for *3D flows they do not*, primarily due to the inability of correlating the crossflow velocity components.

The cross flow is driven by $\frac{\partial p}{\partial z}$, which is imposed on BL from the outer potential flow U(x,z).

3-D boundary layer equations

$$\begin{split} u_{x} + v_{y} + w_{z} &= 0; \\ uu_{x} + vu_{y} + wu_{z} &= -\frac{\partial}{\partial x}(p/\rho) + vu_{yy} - \frac{\partial}{\partial y}(\overline{u'v'}) \\ uw_{x} + vw_{y} + ww_{z} &= -\frac{\partial}{\partial z}(p/\rho) + vw_{yy} - \frac{\partial}{\partial y}(\overline{v'w'}) \\ + \text{ closure equations} \end{split}$$

Differential methods have been developed for this reason as well as for extensions to more complex and non-thin boundary layer flows.