Chapter 7.2 Flat Plate CV Analysis and 3D BL Equations

Introduction:

 Boundary layer flows: External flows around streamlined bodies at high Re such that viscous (no-slip and shear stress) effects confined close to the body surfaces and its wake but are nearly inviscid far from the body.

Applications of BL theory: *aerodynamics* (airplanes, rockets, projectiles), *hydrodynamics* (ships, submarines, torpedoes), *transportation* (automobiles, trucks, cycles), *wind engineering* (buildings, bridges, water towers), and *ocean engineering* (buoys, breakwaters, cables).

Historical perspective:

- 1. BL equations: 2D and axisymmetric similarity solutions
- 2. Momentum integral methods: success 2D and failure 3D due crossflow modeling
- 3. 3D BL differential codes
- 4. Separation: viscous/inviscid interaction and thick BL and partially parabolic equations
- 5. CFD: RANS, URANS, LES, Hybrid-RANS/LES, DNS
- 6. Multi fidelity, ML&AI
- 7. Fluid-structure interaction, multi-disciplinary

Flat-Plate Momentum Integral Analysis & Laminar approximate solution

Consider flow of a viscous fluid at high Re past a flat plate, i.e., flat plate fixed in a uniform stream of velocity $U\hat{i}$: 2D steady constant property flow, fixed CV, inlet $U = constant$, outlet $u = u(y)$, no slip $y = 0$, no shear stress along outer streamline, i.e., at $y = H$ at inlet and $y = \delta$ at outer boundary, thickness $t = 0$ such that $p = constant$.

Boundary-layer thickness arbitrarily defined by $y = \delta_{99\%}$ (where, $\delta_{99\%}$ is the value of y at $u = 0.99U$). Streamlines outside $\delta_{99\%}$ will deflect an amount δ^* (the displacement thickness). Thus, the streamlines move outward from $y = H$ at $x = 0$ to $y = Y = \delta = H + \delta^*$ at $x = x_1$.

Conservation of mass:

$$
\int_{\text{CS}} \rho \underline{V} \cdot \underline{n} dA = 0 = - \int_0^H \rho U b \, dy + \int_0^{H+\delta^*} \rho u b \, dy \qquad b = \text{span width}
$$

Which simplifies to:

$$
UH = \int_0^Y u dy = \int_0^Y (U + u - U) dy = UY + \int_0^Y (u - U) dy
$$

Substituting $Y = H + \delta^*$ results in the definition of displacement thickness:

$$
\delta^* = \int_0^Y \left(1 - \frac{u}{v}\right) dy
$$

Flowrate between δ^* and δ of inviscid flow=actual flowrate, i.e., inviscid flow rate about displacement body $=$ equivalent viscous flow rate about actual body

$$
\int_{0}^{\delta} U dy - \int_{0}^{\delta^*} U dy = \int_{0}^{\delta} u dy \Rightarrow \delta^* = \int_{0}^{\delta} \left(1 - \frac{u}{U} \right) dy
$$

w/o BL - displacement effect=actual discharge

For 3D flow, in addition it must also be explicitly required that δ^* is a stream surface of the inviscid flow continued from outside of the BL.

Conservation of x-momentum:

$$
\sum F_x = -D = \int_{CS} \rho u \underline{V} \cdot \underline{n} dA = -\int_0^H \rho U(Ubdy) + \int_0^Y \rho u(ubdy)
$$

 $\text{drag} = D = \rho U^2 H b - \int_0^Y \rho u^2$ $\int_0^1 \rho u^2 b dy$ = Fluid force on plate = - Plate force on CV (fluid)

Using continuity: $H = \int_0^Y \frac{u}{U} dy$ *U u* $H = \int_0^1$

$$
D(x) = \rho bU^2 \int_0^Y u/U dy - \int_0^Y u^2 b dy = b \int_0^x \tau_w dx
$$

$$
\frac{D}{\rho bU^2} = \theta = \int_0^{Y=\delta} \frac{u}{U} \left(1 - \frac{u}{U}\right) dy
$$

 θ is the **momentum thickness** (**function of x only**), an important measure of the drag.

$$
\frac{dD}{dx} = b\tau_w = \rho bU^2 \frac{d\theta}{dx}
$$
\n
$$
\tau_w = \rho U^2 \frac{d\theta}{dx}
$$
\n
$$
C_f = \frac{\tau_w}{\frac{1}{2}\rho U^2}
$$
\n
$$
\frac{C_f}{2} = \frac{d\theta}{dx}
$$
\nSpecial case 2D momentum integral equation for $dp/dx = 0$
\n
$$
C_D = \frac{1}{L} \int_0^L C_f(x) dx = \frac{1}{L} \int_0^L 2 \frac{d\theta}{dx} dx = \frac{2}{L} \theta(L)
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx = \frac{1}{L} \int_0^L C_f(x) dx = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$
\n
$$
\frac{d\theta}{dx} = \frac{1}{L} \int_0^L C_f(x) dx
$$

FIGURE 4-2 Momentum and displacement thicknesses.

Sumple example solution momentum intend metal for plan BL with assumed rollog profile Hosman pregnancial Highle in y with degree determined number Soundary conditions which am be Sobispel $\frac{2}{5}$ = 40 + A1 $\frac{4}{5}$ + AL $\frac{6}{5}$ + M(x, 0) = 0 = 6 = 0 $\langle \, \langle \, \rangle \rangle$ = 2 8/8 - (8/8)² $7(4,8)=7$ = 3 = aska, +az (2) 기능으로 - 스파기 $B_{\nu}(y,5) = 0 \Rightarrow 0 = 0, +20,$ (3) $U(43x^{2}-12x^{12})$ $Zw = 800 + \frac{16}{16}$ 5 0 = { 음 (- 음) 4 > = | [음 - (응)][- 남 - (응)] 4 } $7 = 8/5$ = $S([27-72)(1-27+72) d7 - 97=87d9$ $= 2/(65)$ $Z_{\omega} = \mu \frac{A_{24}}{A}$ = $\mu \sigma \frac{a}{\sigma} \left[\frac{24}{3} - \left(\frac{4}{3} \right)^2 \right]_{\frac{4}{3} = 0} = \frac{\mu \sigma_{\infty}^2}{6} \left(\frac{2 - \gamma^2}{3} \right)_{\gamma = 0}$ $= 2\mu\sigma/s$ = 20 = $\frac{4}{28}$ ($\frac{2}{18}$ 5) $\frac{1}{2}$ $5/4 = 5.18 R_{\rm x}^{-1/2}$ $T_w / \frac{1}{2} eV^2 = C_f = .73$ $R_{av} = 0 / x$ $Q_{\rm{avg}} = \text{UV}/\text{V}$ $S^{4}/x = 1.83$ Re⁻¹¹ $40Rx^{-1/2} = 2C_{f}(1)$ 10% enor Blazing all of Ray 12 If "/v = 20 = linear any (1) 1 (2) can be soluped of poor an recent, shown if 3rd or hyder forgusinal more securite results. 24 gives use (v, 5) = - 25/32 # 0 is morret curvature

Boundary layer approximations, equations, and comments

 $2D$ NS, ρ =constant, neglect g (subscript indicates derivative)

$$
u_x + v_y = 0
$$

$$
u_t + uu_x + vu_y = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v(u_{xx} + u_{yy})
$$

$$
v_t + uv_x + vv_y = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v(v_{xx} + v_{yy})
$$

Introduce non-dimensional variables that includes scales such that all variables are of order magnitude O(1):

$$
x^* = x/L
$$

\n
$$
y^* = \frac{y}{L} \sqrt{Re}
$$

\n
$$
t^* = tU/L
$$

\n
$$
u^* = u/U
$$

\n
$$
v^* = \frac{v}{U} \sqrt{Re}
$$

\n
$$
p^* = \frac{p - p_0}{\rho U^2}
$$

\n
$$
Re = UL/v
$$

The NS equations become (drop *)

$$
u_x + v_y = 0
$$

$$
u_t + uu_x + vu_y = -p_x + \frac{1}{Re}u_{xx} + u_{yy}
$$

$$
\frac{1}{Re}(v_t + uv_x + vv_y) = -p_y + \frac{1}{Re^2}v_{xx} + \frac{1}{Re}v_{yy}
$$

For large Re (BL assumptions) the underlined terms drop out and the BL equations are obtained.

Therefore, y-momentum equation reduces to

$$
p_y = 0
$$

External flow:
i.e., $p = p(x, t)$
 $\Rightarrow p_x = -\rho(U_t + UU_x)$
External flow:
steady Bernoulli equation

$$
p + \frac{1}{2}\rho U^2 = B
$$

$$
p_x = -\rho UU_x
$$

2D BL equations:

$$
u_x + v_y = 0
$$

$$
u_t + uu_x + vu_y = (U_t + UU_x) + vu_{yy}
$$
Note at y=0: $\frac{\partial p}{\partial x} = vu_{yy}$

Note:

- (1) U(x,t) and $\frac{\partial p(x,t)}{\partial x}$ impressed on BL by the external flow.
- $(2) \frac{\partial^2}{\partial x^2}$ $\frac{\partial}{\partial x^2}$ = 0: i.e. longitudinal (stream-wise) diffusion is neglected.
- (3) Due to (2), the equations are parabolic in x. Physically, this means all downstream influences are lost other than that contained in external flow. A marching solution is possible.
- (4) Boundary conditions

No slip: $u(x, 0, t) = v(x, 0, t) = 0$ Initial condition: $u(x, y, 0)$ known. Inlet condition: $u(x_0, y, t)$ given at x_0 Matching with outer flow: $u(x, \infty, t) = U(x, t)$

(5) When applying the boundary layer equations, one must keep in mind the restrictions imposed on them due to the basic BL assumptions.

 \rightarrow not applicable for thick BL or separated flows (although they can be used to estimate occurrence of separation).

(6) Curvilinear coordinates

Although BL equations have been written in Cartesian Coordinates, they apply to curved surfaces provided $\delta \ll R$ and x, y are curvilinear coordinates measured along and normal to the surface, respectively. In such a system under the BL assumptions:

$$
p_{y} = \frac{\rho u^{2}}{R}
$$

Assume *u* is a linear function of *y*: $u = Uy/\delta$

$$
\frac{dp}{dy} = \frac{\rho U^2 y^2}{R\delta^2}
$$

$$
p(\delta) - p(0) \propto \frac{\rho U^2 \delta}{3R}
$$

Or

$$
\frac{\Delta p}{\rho U^2} \propto \frac{\delta}{3R}
$$
; therefore, we require $\delta \ll R$.

(7) Practical use of the BL theory

For a given body geometry:

- (a) Inviscid theory gives $p(x) \rightarrow$ integration gives Lift and $\text{Drag} = 0$.
- (b) BL theory gives $\rightarrow \delta^*(x)$, $\tau_w(x)$, $\theta(x)$, etc. and predicts separation if any.
- (c) If separation present then no further information \rightarrow must use inviscid models, BL equation in inverse mode, or NS equations.
- (d) If separation is absent, integration of $\tau_w(x)$ provides frictional resistance; displacement body (including *δ **) inviscid theory gives new $p(x)$; and for displacement body drag go back to (2) for more accurate BL calculation including viscous – inviscid interaction.

(8) Separation and shear stress

At the wall,

 $u = v = 0 \rightarrow u_{yy} = \frac{1}{u}$ $\frac{1}{\mu}p_x$ 2nd derivative u depends on p_x

1st derivative u gives $\tau_w \rightarrow \tau_w = \mu u_y\vert_w$ $\tau_w = 0$ separation

Bernoulli: $p_x = -\rho U U_x$

Adverse pressure gradient $p_x > 0$ and $U_x < 0$:

H = shape parameter = $\frac{\delta^*}{\delta}$ $\frac{\partial}{\partial \theta}$ depends shape velocity profile provides indicator for separation $= 3.5$ laminar $= 2.4$ turbulent flow