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Chapter 7.2 Flat Plate CV Analysis and 3D BL Equations

Introduction:

Boundary layer flows: External flows around streamlined bodies at
high Re such that viscous (no-slip and shear stress) effects confined
close to the body surfaces and its wake but are nearly inviscid far from
the body.

Applications of BL theory: aerodynamics (airplanes, rockets,
projectiles), hydrodynamics (ships, submarines, torpedoes),
transportation (automobiles, trucks, cycles), wind engineering
(buildings, bridges, water towers), and ocean engineering (buoys,
breakwaters, cables).

Historical perspective:

1.

2.

BL equations: 2D and axisymmetric similarity solutions

Momentum integral methods: success 2D and failure 3D due
crossflow modeling

3D BL differential codes

. Separation: viscous/inviscid interaction and thick BL and partially
parabolic equations

. CFD: RANS, URANS, LES, Hybrid-RANS/LES, DNS
. Multi fidelity, ML&AI

. Fluid-structure interaction, multi-disciplinary
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Flat-Plate Momentum Integral Analysis & Laminar approximate solution

Consider flow of a viscous fluid at high Re past a flat plate, i.e., flat plate
fixed in a uniform stream of velocityUi : 2D steady constant property
flow, fixed CV, inlet U = constant, outlet u = u(y), no slip y = 0, no shear
stress along outer streamline, i.e., at y = H at inlet and y = & at outer
boundary, thickness t = 0 such that p = constant.
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Boundary-layer thickness arbitrarily defined by y = Jgqy, (Where, g, IS
the value of y at u = 0.99U). Streamlines outside .4, Will deflect an
amounto (the displacement thickness). Thus, the streamlines move
outward fromy=H at x=0to y=Y=6=H +5 at x=x,.

Conservation of mass:
[ oV ondA=0=— fOHpUbdy n fOH+5 pubdy b= spanwidth

CS

Which simplifies to:
UH = [ udy = [ (U+u-U)dy =UY + | (u-U)dy

Substituting Y = H + 0 results in the definition of displacement

thickness:
N Y
5" =, (1 —g) dy
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S~ which is only a function of x being an important measure of effect of
BL on external flow. To see this more clearly, consider an alternate
derivation based on an equivalent discharge/flow rate argument:

A

d

0* Lam=4/3

0* Turb=0/8

o o
IUdy :I udy Per unit span
5 0

H_J
Inviscid flow about 6* body

Flowrate between & and & of inviscid flow=actual flowrate, i.e., inviscid
flow rate about displacement body = equivalent viscous flow rate about
actual body

5 5 5 5 u
Udy — [Udy = [udy = 6™ = (1— —jdy

D i R (G

w/o BL - displacement effect=actual discharge

For 3D flow, in addition it must also be explicitly required that 5 is a
stream surface of the inviscid flow continued from outside of the BL.

Conservation of x-momentum:
ZFX =-D =j puV e ndA =—j
CS 0

Drag = D = pU?Hb — foypu2 bdy = Fluid force on plate = - Plate
force on CV (fluid)

H Y

pU(Ubdy) +j pu(ubdy)
0

Y u
Using continuity: H :L Udy
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Y Y X
D(x) = przf u/Udy —f u? bdy = bf T, dX
0 0 0
D

— 9 —fY=6u(1 u)d

ppUz ), u\ oY

€ is the momentum thickness (function of x only), an important
measure of the drag.

ab

— 2 do
dx bt,,=pbU dx
, do
Tw = pU dx
TW
Cr =1 5
2PV
¢ do Special case 2D
2 dx

momentum integral
equation for dp/dx =0

1

— ——— i t— .

Shaded

T i-e

Coordinate normal to the wall

FIGURE 4-2

Momentum and displacement thicknesses.
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Boundary layer approximations, equations, and comments

— 5 Upup

2D NS, p=constant, neglect g (subscript indicates derivative)

Uy +v, =0
10p
UV+m%+ﬂmy=_;5;+Vwm+ﬂ@ﬂ
p
Ve +Uuvy + vy, = ~5ay + V(Vxx + Vyy)

Introduce non-dimensional variables that includes scales such that all
variables are of order magnitude O(1):

X =x/L
y*=%\/@
t"=tU/L
u =u/U
*—V\/R_
v —E e
*_ p_po
P =

Re=UL/v
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The NS equations become (drop *)

Uy +v, =0
1
Up + UUy + VU, = =Py + R—euxx + Uy,
1 1 1
R_e(vt +uv, +vv,) = —py, + o7 Vax + o= Vyy

For large Re (BL assumptions) the underlined terms drop out and the BL
equations are obtained.

Therefore, y-momentum equation reduces to

py, =0 External flow:
y .
unsteady Euler equation or

i.e.,p =p(x,t) ste?dy Bernoulli equation
p+-pU? =B
= px = —p(Ur + UUy) Dx =- pUU,

2D BL equations:

Uy +v, =0

2
ur + uuy +vuy, = (Up + UU,) +vuy, Note at y=0: % = Vil
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Note:

(1) U(xt) and % impressed on BL by the external flow.

2
(2) % = 0: i.e. longitudinal (stream-wise) diffusion is neglected.
(3) Dueto (2), the equations are parabolic in x. Physically, this means
all downstream influences are lost other than that contained in
external flow. A marching solution is possible.

(4) Boundary conditions

matching
inlet
/&/ 5
::> Solution by
5 marching
T y
X
.

Xo '\

No slip

No slip: u(x,0,t) = v(x,0,t) =0

Initial condition: u(x, y,0) known.

Inlet condition: U(x,, y,t)given at X,
Matching with outer flow: u(x,c,t)=U(x,t)

(5 When applying the boundary layer equations, one must keep in
mind the restrictions imposed on them due to the basic BL
assumptions.

— not applicable for thick BL or separated flows (although
they can be used to estimate occurrence of separation).
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(6) Curvilinear coordinates

Although BL equations have been written in Cartesian Coordinates, they
apply to curved surfaces provided 6 << R and x, y are curvilinear
coordinates measured along and normal to the surface, respectively. In
such a system under the BL assumptions:

p, =2
Y R
Assume u is a linear function of y: U= UY/5
dp _ pU’y’
dy Ro?

pU°s
p(0)—p(0) oc 3R
Or

Ap 0 :
U x 3R’ therefore, we require 6 <<R.
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(7) Practical use of the BL theory

For a given body geometry:

(a)

(b)

(©)

(d)

Inviscid theory gives p(x) — integration gives Lift and
Drag = 0.

BL theory gives — & (x), mw(x), O(x), etc. and predicts
separation if any.

If separation present then no further information — must
use inviscid models, BL equation in inverse mode, or NS
equations.

If separation is absent, integration of zw(X) provides
frictional resistance; displacement body (including &)
inviscid theory gives new p(x); and for displacement body
drag go back to (2) for more accurate BL calculation
including viscous — inviscid interaction.
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(8) Separation and shear stress

At the wall,
u=v=0-1u,,, = ipx 2" derivative u depends on p,

1% derivative u gives t — Ty = ty w W= 0 separation

U
U
PI
o Backflow
(c) Weak adverse (d) Critical adverse  (e) Excessive adverse

gradient: gradient: gradient:
av_ Zero slope Backflow
dx at the wall: at the wall:
an >0 Separation Separated
dx flow region
No separation,
PI in the flow

Bernoulli: p,, =- p UU,,

Adverse pressure gradient p,, > 0 and U, < 0:

H = shape parameter = %* depends shape velocity profile provides
indicator for separation = 3.5 laminar = 2.4 turbulent flow



