
058:0160  Chapter 7.1 
Professor Fred Stern     Fall 2024  1 

 

Chapter 7.1 Boundary Layer Theory 

1. Historical Background and Boundary Layer Concepts 

Before Prandtl 1905 Boundary layer theory: 

1. Mostly solutions of the linearized Navier Stokes equations for parallel and 

low Re flows as per Chapter 3 for which balance is for pressure and/or gravity 

and viscous forces, although few solutions include convection. 

2. Advanced inviscid flow solutions for bodies of various shapes for which 

balance is for nonlinear inertia and pressure and/or gravity forces, i.e., 

potential, or inviscid rotational flows. 

3. Empirical hydraulics 

Potential flow theory was surprisingly accurate for streamlined bodies but suffered 

from D'Alembert's paradox. 

 
In fluid dynamics, d'Alembert's paradox (or the hydrodynamic paradox) is a contradiction reached 

in 1752 by French mathematician Jean le Rond d'Alembert. D'Alembert proved that – for 

incompressible and inviscid potential flow – the drag force is zero on a body moving with constant 

velocity relative to the fluid. Zero drag is in direct contradiction to the observation of substantial 

drag on bodies moving relative to fluids, such as air and water, especially at high velocities 

corresponding with high Reynolds numbers. It is a particular example of the reversibility paradox. 

 

Ludwig Prandtl 

 
Ludwig Prandtl was a German fluid dynamics, physicist and aerospace scientist. He was a pioneer 

in the development of rigorous systematic mathematical analyses which he used for underlying the 

science of aerodynamics, which have come to form the basis of the applied science of aeronautical 

engineering. In the 1920s he developed the mathematical basis for the fundamental principles of 

subsonic aerodynamics in particular; and in general, up to and including transonic velocities. His 

studies identified the boundary layer, thin-airfoils, and lifting-line theories. The Prandtl number 

was named after him. 

http://en.wikipedia.org/wiki/D'Alembert's_paradox
https://www.bing.com/images/search?q=prandtl&ufn=ludwig+prandtl&stid=f9484e24-93f1-cdfc-b512-ceaff72afb25&cbn=EntityAnswer&cbi=0&FORM=IARRTH
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Consider high Re flow (1) around streamlined/slender body for which viscous 

effects are confined to a narrow boundary layer near the solid surface/wall or (2) for 

free shear flows, i.e. jets, wakes and mixing layers for which the vorticity is similarly 

confined to a narrow region.  In both cases Prandtl’s boundary layer theory is 

applicable.  Formally uses concept of flow field regions and matched asymptotic 

expansions similarly as for Stokes flows. 
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Boundary Layer Theory Approximations  

Momentum Scales 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −
1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈(𝑢𝑥𝑥 + 𝑢𝑦𝑦) 

𝑢𝑢𝑥~
𝑈2

𝐿
= 𝜈𝑢𝑦𝑦~𝜈

𝑈

δ2     

δ~√
𝜈𝐿

𝑈
 or 

δ

𝐿
~

1

√𝑅𝑒
  

Re~√
𝑈𝐿

𝜈
 

That is  is small for large Re.  Note ~ indicates order of magnitude. 

 

Length Scales 

Convection: L=Ut                 i.e., t=L/U 

Viscous diffusion: δ~√𝜈𝑡    as per exact solutions NS 

δ~√
𝜈𝐿

𝑈
 or 

δ

𝐿
~

1

√𝑅𝑒
 

 

Time Scales 

Convection: t=L/U 

Viscous diffusion: t = √
𝜈𝐿

𝑈3 << L/U 

√
𝜈

𝑈𝐿
 = 

1

√𝑅𝑒
 << 1 

Note: δ ~ √𝜈𝑡 =√
𝜈𝐿

𝑈
, i.e. 

δ

𝑈
= √

𝜈𝐿

𝑈3 = t 
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Boundary layer equations are derived from Navier Stokes equations under 

assumptions: 

𝜕

𝜕𝑥
≪

𝜕

𝜕𝑦
  

𝜕2

𝜕𝑥2
≪

𝜕2

𝜕𝑦2
  

i.e. variation across the boundary layer are much larger than variation along the 

boundary layer.   

Next consider continuity equation 

𝑢𝑥 + 𝑣𝑦 = 0 

Since u >> v and 
𝜕

𝜕𝑥
≪

𝜕

𝜕𝑦
 and both terms are of equal order: 

𝜕𝑣

𝜕𝑦
=

𝑣

δ
 = 

𝜕𝑢

 𝜕𝑥
=

U

𝐿
, i.e., 

𝑣~
δU

𝐿
~

𝑈

√𝑅𝑒
       

The order of magnitude of the pressure variations for which experimental data shows 

that the surface pressure is equivalent to the outer inviscid flow pressure which 

implies of order the inertia forces. 

𝜕𝑝

𝜕𝑥
~ρ𝑢𝑢𝑥          

(p/L = ρ𝑈2/𝐿) 

𝑝 − 𝑝∞~ ρ𝑈2 

The proper nondimensional variables in the boundary layer are, therefore: 

𝑥∗ = 𝑥/𝐿 

𝑦∗ =
𝑦

𝐿
√𝑅𝑒 

𝑡∗ = 𝑡𝑈/𝐿 

𝑢∗ = 𝑢/𝑈 

𝑣∗ =
𝜐

𝑈
√𝑅𝑒

⬚
 

𝑝∗ =
𝑝 − 𝑝0

𝜌𝑈2
 

𝑅𝑒 = 𝑈𝐿/𝜈 
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Note that δ = √
𝜈𝐿

𝑈
 and that the distance and velocity across the boundary layer are 

stretched by √𝑅𝑒.  Transformation of the Navier Stokes equations into 

nondimensional variables leads to Prandtl’s boundary layer equations, which 

although retain streamwise convection neglect streamwise diffusion, and in addition 

show that the pressure variation across the boundary layer is also negligible such 

that it can be determined from the outer potential flow solution, and is imposed on 

the boundary layer.   

 

Lastly the order of magnitude of the wall shear stress is: 

w = 
𝜕𝑢

𝜕𝑦
 = U = (U/L) √𝑅𝑒     (where  = L/√𝑅𝑒) 

𝐶𝑓 =  
𝜏𝑤

(
1

2
)𝜌𝑈2

 = 
2𝜇𝑈

𝜌𝐿𝑈2 √𝑅𝑒 = 
2

 √𝑅𝑒
 

Where different solutions have different numerical factors than 2. 

 
In physics and fluid mechanics, a boundary layer is the layer of fluid in the 

immediate vicinity of a bounding surface where the effects of viscosity are 

significant. In the Earth's atmosphere, the atmospheric boundary layer is the air layer 

near the ground affected by diurnal/daily heat, moisture, or momentum transfer to 

or from the surface. On an aircraft wing the boundary layer is the part of the flow 

close to the wing, where viscous forces distort the surrounding non-viscous flow. 


