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Characteristics of turbulence 
• Randomness and fluctuation: 

• Nonlinearity: Reynolds stresses from the 
nonlinear convective terms 

• Diffusion: enhanced diffusion of momentum, 
energy etc. 

• Vorticity/eddies/energy cascade: vortex 
stretching 

u U u= +
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•Dissipation: occurs at smallest scales 
•Three-dimensional: fluctuations are always 3D 
•Coherent structures: responsible for a large part of  

the mixing 
•A broad range of length and time scales: making

DNS very difficult 

Characteristics of turbulence 
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Approaches to predicting turbulent flows
• AFD, EFD and CFD:

– AFD: No analytical solutions exist 

– EFD: Expensive, time-consuming, and sometimes 
impossible (e.g. fluctuating pressure within a flow) 

– CFD: Promising, the need for turbulence modeling  

• Another classification scheme for the approaches
– The use of correlations:

– Integral equations: reduce PDE to ODE for simple cases 

– One-point closure: RANS equations + turbulent models 

– Two-point closure: rarely used, FFT of Two-point 
equations 

– LES: solve for large eddies while model small eddies 

– DNS: solve NS equations directly without any model  

( )ReDC f=
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Deeper insights on RANS/URANS/LES

RANS

URANS

LES



7

Reynolds Averaging

• Time averaging: for stationary 
turbulence 

• Spatial averaging: for homogenous 
turbulence 

• Ensemble averaging: for any turbulence 

• Phase averaging: for turbulence with 
periodic motion 
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• RANS equation 

• RANS equation in conservative form 

• Numbers of unknowns and equations
–Unknowns: 10 = P (1) + U (3) +           (6) 
–Equations: 4 = Continuity (1) + Momentum (3) 

RANS equations and unknowns

( )2i i
j ji

j

j i

i j

U U P
U S

t x
u u

x x
   
   

+ = − +
  

 −


( ) ( )2i
j i ji

j i j

j i

U P
U U S

t x
u

x x
u   

   
+ + = − +

   

( )i ju u −



9

The Reynolds-Stress Equation
•Derivation: Taking moments of the NS equation.

Multiply the NS equation by a fluctuating property and time 

average the product. Using this procedure, one can derive a 

differential equation for the Reynolds-stress tensor. 

2
ij ij j i

k ik jk

k k k

ji

k k

uu

x x

U U
U

t x x x

 
  

   
+ = − −


+

   



 

ji
i j k

j

ij

ki k

uu p p
u u u

x x x x


 

   
+ + +    

   
  

 
+

  

•NEW Equations: 6 = 6 equation for the Reynolds stress tensor 
•NEW Unknowns: 22 = 6 + 6 + 10 

2 6
ji

k k

uu
unkowns

x x



→

 

6
ji

j i

uu p p
unkowns

x x 

    
+ → 

   

10i j ku u u unkowns   →



10

The closure problem of turbulence

• Because of the non-linearity of the Navier-Stokes 
equation, as we take higher and higher moments, 
we generate additional unknowns at each level. 

• In essence, Reynolds averaging is a brutal 
simplification that loses much of the information
contained in the Navier-Stokes equation. 

• The function of turbulence modeling is to devise 
approximations for the unknown correlations in 
terms of flow properties that are known so that a 
sufficient number of equations exist.

• In making such approximations, we close the 
system. 
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Characteristics of Wall-Bound Turbulent Flows

• The turbulent boundary layer (zero-
pressure gradient) has universal 
velocity distribution near the wall 
(inner-layer) (Clauser 1951) 
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Turbulent models (RANS) 

• Boussinesq eddy-viscosity approximation
• Algebraic (zero-equation) models 

– Mixing length 
– Cebeci-Smith Model 
– Baldwin-Lomax Model 

• One-equation models
– Baldwin-Barth model 
– Spalart-Allmaras model 

• Two-equation models 
– k- model 
– k- model

• Four-equation (v2f) models 
• Reynolds-stress (seven-equation) models 
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Turbulent models (RANS) 
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• Boussinesq eddy-viscosity approximation

• Dimensional analysis shows:             , where q is a 
turbulence velocity scale and  L is a turbulence length 
scale. Usually            where             is the turbulent 
kinetic energy. Models that do not provide a length 
scale are called incomplete. 
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Turbulent models (0-eqn RANS) 

• Mixing length model: 2

T mix

dU
l

dy
 =

• Assume                  for free shear flow, then( )mixl x=

─ =0.180 for far wake 

─ =0.071 for mixing layer 

─ =0.098 for plane jet 

─ =0.080 for round jet 

• Comments:

─Reliable only for free shear flows with different  values

─Not applicable to wall-bounded flows
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Turbulent models (0-eqn RANS) 

Cebeci-Smith Model (Two-layer model)
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Turbulent models (0-eqn RANS) 

Baldwin-Lomax Model (Two-layer model)
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Turbulent models (1-eqn RANS) 
Baldwin-Barth model 

Kinematic eddy viscosity :

Turbulence Reynolds number :

Closure coefficients and auxiliary relations: 
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Turbulent models (1-eqn RANS) 

Spalart-Allmaras model

Kinematic eddy viscosity :

Eddy viscosity equation:

Closure coefficients and auxiliary relations: 
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Turbulent models (1-eqn RANS) 

Comments on one-equation models:
1.One-equation models based on turbulence kinetic energy are incomplete as 

they relate the turbulence length scales to some typical flow dimension. They 

are rarely used. 

2.One-equation models based on an equation for the eddy viscosity are 

complete such as Baldwin-Barth model and Spalart-Allmaras model. 

3.They circumvent the need to specify a dissipation length by expressing the 

decay, or dissipation, of the eddy viscosity in terms of spatial gradients. 

4 Spalart-Allmaras model can predicts better results than Baldwin-Barth 

model, and much better results for separated flow than Baldwin-Barth model 

and algebraic models. 

5 Also most of DES simulations are based on the Spalart-Allmaras model. 
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Turbulent models (2-eqn RANS) 
k- model:
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Turbulent models (2-eqn RANS) 

, 

Comments on two-equation models:
1. Two-equation models are complete;

2. k- and k- models  are the most widely used two-

equation models and a lot of versions exist. For example, a 

popular variant of k- model introduced by Menter has 

been used in our research code CFDSHIP-IOWA. There are 

also a lot of low-Reynolds-number versions with different 

damping functions. 

3. k- model shows better results than k- model for 

flows with adverse pressure gradient and separated flows 

as well as better numerical stability. 
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Turbulent models (4-eqn RANS) 
v2f-k model:

, 
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v2f-k model:
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Turbulent models (4-eqn RANS) 

, 

Comments on four-equation models:
1. For two-equation models a major problem is that it is hard to 

specify the proper conditions to be applied near walls. 

2. Durbin suggested that the problem is that the Reynolds number is 

low near a wall and that the impermeability condition (zero normal 

velocity) is far more important. That is the motivation for the equation 

for the normal velocity fluctuation. 

3. It was found that the model also required a damping function f, 

hence the name  v2f model. 

4. They appear to give improved results at essentially the same cost 

as the k- and k- models especially for separated flows. Hopefully the 

v2f-k model can have better numerical stability than v2f-k model as 

their counterparts behave in two-equation models. 
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Turbulent models (7-eqn RANS) 

Some of the most noteworthy types of applications for which models based 

on the Boussinesq approximation fail are:

1. Flows with sudden changes in mean strain rate

2. Flow over curved surfaces

3. Flow in ducts with secondary motions

4. Flow in rotating fluids

5. Three-dimensional flows

6. Flows with boundary-layer separation

In Reynolds-stress models, the equations for the Reynolds stress 

tensor are modeled and solved along with the -equation:
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Turbulent models (7-eqn RANS) 
These are some versions of Reynolds stress models:

1. LRR rapid pressure-strain model 

2. Lumley pressure-strain model

3. SSG pressure-strain model 

4. Wilcox stress- model 

Comments on Reynolds stress models:

1.Reynolds stress models require the solution of seven additional 

PDEs and those equation are even harder to solve than the two-equation 

models. 

2. Although Reynolds stress models have greater potential to 

represent turbulent flow more correctly, their success so far has been 

moderate. 

3. There is a lot of current research in this field, and new models 

are often proposed. Which model is best for which kind of flow is not clear 

due to the fact that in many attempts to answer this question numerical 

errors were too large to allow clear conclusions to be reached. 
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Turbulent models (LES)

• Large scale motions are generally much more energetic than 
the small scale ones.

• The size and strength of large scale motions make them to be 
the most effective transporters of the conserved properties.

• LES treats the large eddies more exactly than the small ones 
may make sense

• LES is 3D, time dependent and expensive but much less costly 
than DNS. 
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Turbulent models (LES, filtering)

• LES needs a velocity field that contains only the large scale 
components of the total field, which is achieved by filtering 
the velocity field (Leonard, 1974)

( ) ( ) ( )  duxGxu ii  −=

• G(x-) is the filter kernel, is a localized function, which 
includes a Gaussian, a box filter (a simple local average) and a 
cutoff (a filter which eliminates all Fourier coefficients 
belonging to wavenumbers above a cutoff)

• Each filter has a length scale associated with it, .
• Eddies of size large than  are large eddies while those 

smaller than  are small eddies and need to be modeled. 
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Turbulent models (LES, 
Governing Equations)

• Filtered Navier-Stokes equations (constant density, 
incompressible):
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• The filter width > grid size h
• The models used to approximate the SGS Reynolds 

stress are called subgrid-scale (SGS) or subfilter-scale 
models.
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Turbulent models (LES, Smagorinsky model)

• The earliest and most commonly used subgrid scale 
model is one proposed by Smagorinsky (1963), which is 
an eddy viscosity model.

• As the increased transport and dissipation are due to the 
viscosity in laminar flow, it seems reasonable to assume 
that

Eddy viscosity 

ijt

i

j

j

i
tji

S

kk

S

ji S
x

u

x

u
 2

3

1
,, =


















+




=−

Strain rate of the large scale or resolved field
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22 = 

2.0SC Model constant

• Drawbacks: 1. Cs is not constant
2. Changes of Cs are required in all shear flows
3. Need to be reduced near the wall.
4. Not accurate for complex and/or higher

Reynolds number flows.
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Turbulent models (LES, Scale-similarity model 
and Dynamic model)

• Dynamic model: 
1. filtered LES solutions can be filtered again using a filter 
broader than the previous filter to obtain a very large scale 
field.
2. An effective subgrid-scale field can be obtained by 
subtraction of the two fields.
3. model parameter can then be computed.
Advantages: 1. model parameter computed at every spatial 
grid point and every time step from the results of LES
2. Self-consistent subgrid-scale model
3. Automatically change the parameter near the wall and in 
shear flows
Disadvantages: backscatter (eddy viscosity<0) may cause 
instability.
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Turbulent models (DES)

• Massively separated flows at high Re usually involve

both large and small scale vortical structures and very

thin turbulent boundary layer near the wall

• RANS approaches are efficient inside the boundary

layer but predict very excessive diffusion in the separated

regions

• LES is accurate in the separated regions but is unaffordable

for resolving thin near-wall turbulent boundary layers at

industrial Reynolds numbers

• Motivation for DES: combination of LES and RANS. RANS

inside attached boundary layer and LES in the separated

regions
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DES Formulation 
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• Modification to RANS models was straightforward by 

substituting the length scale    , which is the distance to the 

closest wall, with the new DES length scale,     defined as: 

• where        is the DES constant,       is the grid spacing and is 

based on the largest dimensions of the local grid cell, and                

are the grid spacing in x, y and z coordinates respectively

• Applying the above modification will result in S-A Based, 

standard k- (or k-)  based and Menter’s SST based DES 

models, etc.
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Resolved/Modeled/Total Reynolds 
stress (DES)

TKE

Resolved

Modeled

Total 

Modeled Reynolds stress:
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Resolved/Modeled/Total Reynolds 
stress (URANS)

Modeled

Resolved

Total 
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Deep insight into RANS/DES (Point oscillation on 
free surface with power spectral analysis)

EFD DES URANS

2HZ

-5/3
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Direct Numerical Simulation (DNS)

• DNS is to solve the Navier-Stokes equation directly 
without averaging or approximation other than numerical 
discretizations whose errors can be estimated (V&V) and 
controlled.

• The domain of DNS must be at least as large as the 
physical domain or the largest turbulent eddy (scale L)

• The size of the grid must be no larger than a viscously 
determined scale, Kolmogoroff scale, 

• The number of grid points in each direction must be at 
least L/ 

• The computational cost is proportional to 

• Provide detailed information on flow field
• Due to the computational cost, DNS is more likely to be a 

research tool, not a design tool.

( ) 434/3 Re01.0Re L
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Two-Phase Turbulence
• Most of the turbulence models (RANS and LES) are developed based on single-

phase flows. The effect of turbulence on the interface and the interface induced 
turbulence are not considered. 

• The eddy viscosity is found to be over-predicted in the gas area near the interface 
(Wang et. al, 2010).

• A buoyancy term Gb is added to the TKE 

Equation (Devolder et al., 2017/2018):

• This additional term suppresses the turbulence level at the air-water interface

Eddy viscosity for KCS wave breaking. Left: V4.5; right: V5.5.
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Examples (Diffuser)
• Asymmetric diffuser with 

separation is a good test case 
for turbulence models.

• A inlet channel was added at 
the diffuser inlet to generate 
fully developed velocity profile

• Boundary layer in the lower 
diffuser wall will separate due 
to the adverse pressure 
gradient.

• Results shown next include 
comparisons between V2f and 
k-ε

• LES simulation of this geometry 
can be found in: 
M. Fatica, H. J. Kaltenbach, and 
R. Mittal, “Validation of LES in a 
Plain Asymmetric Diffuser”,     
center for turbulence research, 
annual research briefs, 1997
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Examples (Diffuser)

• Mean velocity 
predicted by V2f 
agreed very well 
with EFD data, 
particular the 
separation 
region is 
captured.

• K-ε model fails 
to predict the 
separation 
caused by 
adverse 
pressure 
gradient.
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Examples (Diffuser)

• TKE predicted by V2f agreed better with EFD 
data than k- ε model, particular the 
asymmetric distribution.

• Right column is for the skin friction coefficient 
on the lower wall, from which the separation 
and reattachment point can be found.

v2f

k-ε

2x/H
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