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Introduction to numerical methods
• Approaches to Fluid Dynamical Problems: 
    1. Simplifications of the governing equations AFD
    2. Experiments on scale models EFD
    3. Discretize governing equations and solve by 

computers CFD
• CFD is the simulation of fluids engineering system 

using modeling and numerical methods
• Possibilities and Limitations of Numerical Methods:
   1. Coding level: quality assurance, programming
      defects, inappropriate algorithm, etc.
   2. Simulation level: iterative error, truncation error, grid
      error, etc.
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Components of numerical methods 
(Properties)

• Consistence
  1. The discretization should become exact as the grid spacing
       tends to zero
   2. Truncation error: Difference between the discretized equation
       and the exact one
• Stability: does not magnify the errors that appear in 

the course of numerical solution process.
   1. Iterative methods: not diverge
    2. Temporal problems: bounded solutions
    3. Von Neumann’s method
    4. Difficulty due to boundary conditions and non-linearities
        present.
• Convergence: solution of the discretized equations 

tends to the exact solution of the differential equation 
as the grid spacing tends to zero.
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• Conservation
  1. The numerical scheme should on both local and global basis 

respect  the conservation laws.
   2. Automatically satisfied for control volume method, either 

individual control volume or the whole domain.
   3. Errors due to non-conservation are in most cases appreciable 

only on relatively coarse grids, but hard to estimate quantitatively  
• Boundedness:
   1. Numerical solutions should lie within proper bounds (e.g. non-

negative density and TKE for turbulence; concentration between 
0% and 100%, VOF between 0 and 1, etc.)

    2. Difficult to guarantee, especially for higher order schemes.
• Realizability: models of phenomena which are too complex to 

treat directly (turbulence, combustion, or multiphase flow) should 
be designed to guarantee physically realistic solutions.

• Accuracy: 1. Modeling error 2. Discretization errors 3. Iterative 
errors

Components of numerical methods 
(Properties, Cont’d)
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Components of numerical methods 
(Discretization Methods)

• Finite Difference Method (focused in this lecture)
  1. Introduced by Euler in the 18th century.
   2. Governing equations in differential form domain with grid 

replacing the partial derivatives by approximations in terms of 
node values of the functions one algebraic equation per grid 
node linear algebraic equation system.

   3. Applied to structured grids  
• Finite Volume Method (not focused in this lecture)
   1. Governing equations in integral form solution domain is 

subdivided into a finite number of contiguous control volumes 
conservation equation applied to each CV.

    2. Computational node locates at the centroid of each CV.
    3. Applied to any type of grids, especially complex geometries
    4. Compared to FD, FV with methods higher than 2nd order will be 

difficult, especially for 3D. Good mass conservation.
• Finite Element Method (not covered in this lecture):
     1. Similar to FV
     2. Equations are multiplied by a weight function before 

integrated over the entire domain. Often used for Solid 
Mechanics.
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Discretization methods (Finite Difference, 
introduction)

• First step in obtaining a numerical solution is to 
discretize the geometric domain to define a 
numerical grid

• Each node has one unknown and need one algebraic 
equation, which is a relation between the variable 
value at that node and those at some of the 
neighboring nodes.

• The approach is to replace each term of the PDE at 
the particular node by a finite-difference 
approximation.

• Numbers of equations and unknowns must be equal 
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Discretization methods (Finite Difference, 
approximation of the first derivative)

• Taylor Series Expansion: Any continuous differentiable 
function, in the vicinity of xi , can be expressed as a Taylor 
series:
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• Higher order derivatives are unknown and can be dropped 
when the distance between grid points is small.

• By writing Taylor series at different nodes, xi-1, xi+1, or both xi-
1 and xi+1, we can have:
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Discretization methods (Finite Difference, 
approximation of the first derivative, Cont’d)

• Polynomial fitting: fit the function to an interpolation curve 
and differentiate the resulting curve.

     Example: fitting a parabola to the data at points xi-1,xi, and 
xi+1, and computing the first derivative at xi, we obtain:

• Compact schemes: Depending on the choice of parameters α, 
β, and γ, 2nd order and 4th order CDS, 4th order and 6th order 
Pade scheme are obtained. 
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• Non-Uniform Grids: to spread the error nearly uniformly over 
the domain, it will be necessary to use smaller ∆x in regions 
where derivatives of the function are large and larger ∆x 
where function is smooth. Save computational resources. 
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Discretization methods (Finite Difference, 
approximation of the second derivative)

• Geometrically, the second derivative is the slope of the line 
tangent to the curve representing the first derivative.
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Estimate the outer derivative by FDS, and estimate the inner 
derivatives using BDS, we get

For equidistant spacing of the points:
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Discretization methods (Finite Volume)
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Application of numerical methods in PDE 
• Fluid Mechanics problems are governed by the laws of physics, 

which are formulated for unsteady flows as initial and boundary 
value problems (IBVP), which is defined by a continuous partial 
differential equation (PDE) operator LT (no modeling or numerical 
errors, T is the true or exact solution)

• Analytical and CFD approaches formulate the IBVP by selection 
of the PDE, IC, and BC to model the physical phenomena

• Using numerical methods, the continuous IBVP is reduced to a 
discrete IBVP (computer code), and thus introduce numerical 
errors:

• Numerical errors can be defined and evaluated by transforming 
the discrete IBVP back to a continuous IBVP.
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Application of numerical methods in PDE 
(Truncation and Discretization errors)

• Subtracting equations A2 and A4 gives the IBVP that 
governs the simulation numerical error
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Numerical grids and coordinates
• The discrete locations at which the variables are 

to be calculated are defined by the numerical 
grid

• Numerical grid is a discrete representation of the 
geometric domain on which the problem is to be 
solved. It divides the solution domain into a 
finite number of sub-domains

• Type of numerical grids: 1. structured (regular 
grid), 2. Block-structured grids, and 

   3. Unstructured grids
• Detailed explanations of numerical grids will be 

presented in the last lecture of this CFD lecture 
series.

• Different coordinates have been covered in 
“Introduction to CFD”
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Components of numerical methods
(Solution of linear equation systems, introduction)

• The result of the discretization using either FD or 
FV, is a system of algebraic equations, which are 
linear or non-linear

• For non-linear case, the system must be solved 
using iterative methods, i.e. initial guess 
iterate converged results obtained.

• The matrices derived from partial differential 
equations are always sparse with the non-zero 
elements of the matrices lie on a small number 
of well-defined diagonals

QA =Φ
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Solution of linear equation systems (direct 
methods)

• Gauss Elimination: Basic methods for solving linear systems of 
algebraic equations but does not vectorize or parallelize well 
and is rarely used without modifications in CFD problems.

• LU Decomposition: the factorization can be performed without 
knowing the vector Q 

• Tridiagonal Systems: Thomas Algorithm or Tridiagonal Matrix 
Algorithm (TDMA)  P95
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Solution of linear equation systems 
(iterative methods)

• Why use iterative methods: 
     1. in CFD, the cost of direct methods is too high since the
         triangular factors of sparse matrices are not sparse. 
     2. Discretization error is larger than the accuracy of the
         computer arithmetic
• Purpose of iteration methods: drive both the residual and 

iterative error to be zero
• Rapid convergence of an iterative method is key to its 

effectiveness.

QA =Φ nn QA ρ−=Φ nn Φ−Φ=ε
nnA ρε =

Approximate solution after n iterationnΦ residualnρ
nε Iteration error
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Solution of linear equation systems 
(iterative methods, cont’d)

• Typical iterative methods: 
     1. Jacobi method
     2. Gauss-Seidel method
     3. Successive Over-Relaxation (SOR), or LSOR
     4. Alternative Direction Implicit (ADI) method
     5. Conjugate Gradient Methods
     6. Biconjugate Gradients and CGSTAB
     7. Multigrid Methods
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Solution of linear equation systems 
(iterative methods, examples)

• Jacobi method:
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Solution of linear equation systems 
(coupled equations and their solutions)

• Definition: Most problems in fluid dynamics require 
solution of coupled systems of equations, i.e. 
dominant variable of each equation occurs in some of 
the other equations

• Solution approaches: 
     1. Simultaneous solution: all variables are solved for
         simultaneously
     2. Sequential Solution: Each equation is solved for
        its dominant variable, treating the other variables
        as known, and iterating until the solution is
        obtained.
• For sequential solution, inner iterations and outer 

iterations are necessary
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Solution of linear equation systems (non-
linear equations and their solutions)

• Definition: 
   Given the continuous nonlinear function f(x), find the 

value x=α, such that f(α)=0 or f(α)=β
• Solution approaches: 
     1. Newton-like Techniques: root finding algorithm, 

faster but need good estimation of the solution. 
Seldom used for solving Navier-Stokes equations. 

     2. Global: guarantee not to diverge but slower, such 
as sequential decoupled method
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Solution of linear equation systems 
(convergence criteria and iteration errors)
• Convergence Criteria: Used to determine when 

to quit for iteration method
    1. Difference between two successive iterates
    2. Order drops of the residuals
    3. Integral variable vs. iteration history 

• Inner iterations can be stopped when the 
residual has fallen by one to two orders of 
magnitude. 

• Details on how to estimate iterative errors have 
been presented in CFD lecture.
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Methods for unsteady problems 
(introduction)

• Unsteady flows have a fourth coordinate direction– 
time, which must be discretized.

• Differences with spatial discretization: a force at any 
space location may influence the flow anywhere 
else, forcing at a given instant will affect the flow 
only in the future (parabolic like).

• These methods are very similar to ones applied to 
initial value problems for ordinary differential 
equations.

•The basic problem is to find the solution     a short 
  time ∆t after the initial point. The solution at t1=t0+ ∆t, 
  can be used as a new initial condition and the solution 
  can be advanced to t2=t1+ ∆t , t3=t2+ ∆t, ….etc.

Φ
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Methods for unsteady problems
• Methods for Initial Value Problems in ODEs
    1. Two-Level Methods (explicit/implicit Euler)
    2. Predictor-Corrector and Multipoint Methods
    3. Runge-Kutta Methods
    4. Other methods: Lagrangian and Semi-

Lagrangian scheme

• Application to the Generic Transport Equation
    1. Explicit methods
    2. Implicit methods
    3. Other methods
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Methods for unsteady problems 
(examples)

• Methods for Initial Value Problems in ODEs (4th order 
Runge-Kutta method)
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Methods for unsteady problems 
(examples)

• Application to the Generic Transport Equation
   (Explicit Euler methods)
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Methods for unsteady problems 
(examples)

• Application to the Generic Transport Equation
   (Implicit Euler methods)
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• Advantage: Use of the implicit Euler method allows 
arbitrarily large time steps to be taken

• Disadvantage: first order truncation error in time 
and the need to solve a large coupled set of 
equations at each time step, and more 
computational time for iterations.



Treatment of Advection Equations
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• In the Eulerian method, the advection of some quantity C is described by:
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷
≡ 𝜕𝜕𝐷𝐷

𝜕𝜕𝐷𝐷
+ 𝐮𝐮 • ∇𝐷𝐷 = 0 

• In the pure Lagrangian formulation,
𝑑𝑑𝐷𝐷
𝑑𝑑𝐷𝐷

= 0,
𝑑𝑑𝑑𝑑
𝑑𝑑𝐷𝐷

= 𝐮𝐮(𝑑𝑑, 𝐷𝐷).

• The Semi-Lagrangian scheme
𝐷𝐷𝑛𝑛+1 − 𝐷𝐷𝑑𝑑𝑛𝑛

Δ𝐷𝐷
= 0,

𝑑𝑑𝑑𝑑
𝑑𝑑𝐷𝐷

= 𝐮𝐮(𝑑𝑑, 𝐷𝐷), 𝑑𝑑n+1 = 𝑑𝑑(𝐷𝐷𝑛𝑛+1) = 𝑑𝑑𝑎𝑎
where a  and d denote arrival and departure point, respectively.

 Lagrangian Approach: Tracks individual fluid parcels as they move through space.
 Eulerian Approach: Focuses on fixed points in space and examines how fluid 

properties change at those points.
 Semi-Lagrangian Approach: combines both Lagrangian and Eulerian approaches,  
       Advantages: stability, accuracy; 
       Disadvantages: interpolation errors, complexity;
       Applications: Weather Forecasting, Climate Modeling, Ocean Engineering.



Semi-Lagrangian Scheme
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• Backward Integration:
   Find the departure point, xd , of the fluid particle arriving at the grid point xn+1 

• Interpolation:  
  The departure point usually does not coincide with the grid point, the  
solution  value needs to be interpolated at the departure point.
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• Unconditionally stable: allow very large CFL for significant speedup of overall computation
• Comparable to an benchmark Eulerian VOF method in terms of interface position errors
• Improved with regard to mass conservation, even with much larger CFL numbers
* Z. Wang, J. Yang, F. Stern, A simple and conservative operator-splitting semi-Lagrangian volume-of-fluid advection scheme, J. Comp. Phys., 
in review, 2012

Semi-Lagrangian scheme for VOF

A compressed departure cell

Semi-Lagrangian discretization of VOF Equation

The “departure cell” of each computational cell is tracked backward instead 
of the grid point, which can be determined by locating the two “departure 
faces” of the cell in each spatial direction.

VOF reconstruction
The VOF value updated byTotal volume in the departure cell

where

A stretched departure cell                

30

Presenter
Presentation Notes
Directionally split backward time integration, which simplifies definition and locating of departure volume: a directionally expanded/compressed grid cellPiecewise linear interface calculation (PLIC) scheme for volume fraction evaluation in a departure cell, which preserves sharp interfaceConservation of volume fraction is preserved during directional sweeps, which ensures mass conservation after sweeping all directionsTwo key steps for the semi-Lagrangian method: backward time integration to locate the departure point (“departure cell” here)and interpolation of the value at the departure point. The figure shows the backward integration of cell faces for the semi-Lagrangian method. The “departure cell” is defined as the region enclosed by the departure faces and the horizontal grid lines, which can be stretched or compressed when it is moved to the arrival cell in each single spatial direction.
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Navier-Stokes equations in 
Lagrangian form:
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The values at the departure points can be obtained using the same 
ENO scheme as in the level set equation.

Semi-Lagrangian Scheme for the 
Navier-Stokes Equations
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Solution of Navier-Stokes equations

• Special features of Navier-Stokes 
Equations

• Choice of Variable Arrangement on the 
Grid

• Pressure Poisson equation
• Solution methods for N-S equations
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Solution of N-S equations (special features)
• Navier-Stokes equations (3D in Cartesian coordinates)
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• Discretization of Convective, pressure and Viscous terms
• Conservation properties: 1. Guaranteeing global energy conservation in a 

numerical method is a worthwhile goal, but not easily attained; 
    2. Incompressible isothermal flows, significance is kinetic energy; 3. heat 

transfer: thermal energy>>kinetic energy
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Solution of N-S equations (choice of variable 
arrangement on the grid)

• Collocated arrangement: 
     1. Store all the variables at the same set of grid points and to use the
         same control volume for all variables
     2. Advantages: easy to code
     3. Disadvantages: pressure-velocity decoupling, approximation for terms
• Staggered Arrangements: 
     1. Not all variables share the same grid
     2. Advantages: (1). Strong coupling between pressure and velocities, (2). 

Some terms interpolation in collocated arrangement can be calculated with 
interpolation.

     3. Disadvantages: higher order numerical schemes with order higher than 
2nd will be difficult

     Colocated

Staggered
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Solution of Navier-Stokes equations 
(Pressure Poisson equation)

• Why need equation for pressure: 1. N-S 
equations lack an independent equation for the 
pressure; 2. in incompressible flows, continuity 
equation cannot be used directly

• Derivation: obtain Poisson equation by taking the 
divergence of the momentum equation and then 
simplify using the continuity equation.

• Poisson equation is an elliptic problem, i.e. 
pressure values on boundaries must be known to 
compute the whole flow field
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Solution methods for the Navier-Stokes 
equations

• Analytical Solution (fully developed laminar pipe flow)
• Vorticity-Stream Function Approach: eliminate pressure term
• The SIMPLE (Semi-Implicit Method for pressure-Linked Equations) 

Algorithm:
   1. Guess the pressure field p*
   2. Solve the momentum equations to obtain u*,v*,w*
   3. Solve the p’ equation (The pressure-correction equation)
   4. p=p*+p’
   5. Calculate u, v, w from their starred values using the
       velocity-correction equations
   6. Solve the discretization equation for other variables, such as
       temperature, concentration, and turbulence quantities.
   7. Treat the corrected pressure p as a new guessed pressure p*,
       return to step 2, and repeat the whole procedure until a
       converged solution is obtained.
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Example (lid-driven cavity)
• The driven cavity problem is 

a classical problem that has 
wall boundaries surrounding 
the entire computational 
region. 

• Incompressible viscous flow 
in the cavity is driven by the 
uniform translation of the 
moving upper lid. 

• the vorticity-stream function 
method is used to solve the 
driven cavity problem.

UTOP

o

y
x

u=v=0

u=v=0 u=v=0

u=UTOP, v=0
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Example (lid-driven cavity, governing 
equations)
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Example (lid-driven cavity, 
boundary conditions)

0=ψ on all walls
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Re
1

2
2,1,,,1,1 ζζζ

The other
Three walls

The top wall

For wall pressures, using the tangential momentum 
equation to the fluid adjacent to the wall surface, get:

* s is measured along the wall surface and n is normal to it

* Pressure at the lower left corner of the cavity is assigned 1.0
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Example (lid-driven cavity, discretization 
methods)
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2nd order central difference scheme used for all spatial derivatives

1st order upwind for
 time derivative
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Example (lid-driven cavity, 
solution procedure)

1. Specify the geometry and fluid properties
2. Specify initial conditions (e.g. u=v=    =    =0).
3. Specify boundary conditions
4. Determine ∆t
5. Solve the vorticity transport equation for 
6. Solve stream function equation for 
7. Solve for un+1 and vn+1

8. Solve the boundary conditions for       on the walls
9. Continue marching to time of interest, or until the steady state 

is reached.

ζ ψ

1+nζ
1+nψ

1+nζ



42

Example (lid-driven cavity, residuals)
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Example (lid-driven cavity, sample results)
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Some good books
1. J. H. Ferziger, M. Peric, “ Computational Methods for Fluid
      Dynamics,” 3rd edition, Springer, 2002.
2. Patric J. Roache, “Verification and Validation in
      Computational Science and Engineering,” Hermosa 
      publishers, 1998
3. Frank, M. White, “Viscous Fluid Flow,” 3rd edition, 
      McGraw-Hill Inc., 2006
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