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7~ Introduction to numerical methods™

e Approaches to Fluid Dynamical Problems:
1. Simplifications of the governing equations—> AFD
2. Experiments on scale models—> EFD

3. Discretize governing equations and solve by
computers-> CFD

e CFD is the simulation of fluids engineering system
using modeling and numerical methods

e Possibilities and Limitations of Numerical Methods:
1. Coding level: quality assurance, programming
defects, inappropriate algorithm, etc.

2. Simulation level: iterative error, truncation error, grid
error, etc.




~_“Components of numerical methods -
(Propertles)

Y, -

® (Consistence

1. The discretization should become exact as the grid spacing
tends to zero

2. Truncation error: Difference between the discretized equation
and the exact one

® Stability: does not magnify the errors that appear in
the course of numerical solution process.

1. Iterative methods: not diverge
2. Temporal problems: bounded solutions
3. Von Neumann’s method

4. Difficulty due to boundary conditions and non-linearities
present.

® Convergence: solution of the discretized equations
tends to the exact solution of the differential equation
as the grid spacing tends to zero.




-~ Components.of numerical-methods
(Propertles cont'd)

® (Conservation
1. The numerical scheme should on both local and global basis

respect the conservation laws.

2. Automatically satisfied for control volume method, either
individual control volume or the whole domain.

3. Errors due to non-conservation are in most cases appreciable
only on relatively coarse grids, but hard to estimate quantitatively
® Boundedness:

1. Numerical solutions should lie within proper bounds (e.g. non-
negative density and TKE for turbulence; concentration between
0% and 100%, VOF between 0 and 1, efc. )

2. Difficult to guarantee, especially for higher order schemes.

® Reallzablllty models of phenomena which are too complex to
treat directly (turbulence, combustion, or multiphase flow) should
be designed to guarantee physically realistic solutions.

® Accuracy: 1. Modeling error 2. Discretization errors 3. Iterative
errors




- = Components of numericakmethods
/ gDiscretizati?)n Methods) - :

® Finite Difference Method (focused in this lecture)

1. Introduced by Euler in the 18t century.

2. Governing equations in differential form-> domain with grid->
replacing the partial derivatives by approximations in terms of
node values of the functions—> one algebraic equation per grid
node-> linear algebraic equation system.

3. Applied to structured grids
® Finite Volume Method (not focused in this lecture)

1. Governing equations in integral form-> solution domain is
subdivided into a finite number of contiguous control volumes—>
conservation equation applied to each CV.

2. Computational node locates at the centroid of each CV.
3. Applied to any type of grids, especially complex geometries
4. Compared to FD, FV with methods higher than 2" order will be
difficult, especially for 3D. Good mass conservation.
® Finite Element Method (not covered in this lecture):
1. Similar to FV
2..Equations.are multiplied by a weight function before

integrated over the entire domain. Often used for Solid
Mechanics. :




" Discretization methods (Finite Difference, -
x introduction)

® First step in obtaining a numerical solution is to
discretize the geometric domain-> to define a

numerical grid

® Fach node has one unknown and need one algebraic
equation, which is a relation between the variable
value at that node and those at some of the
neighboring nodes.

® The approach is to replace each term of the PDE at
the particular node by a finite-difference
approximation.

® Numbers of equations and unknowns must be equal

-




Discretization methods (Finite-Difference,
approximation of the first derivative)

® Taylor Series Expansion: Any continuous differentiable
function, in the vicinity of x. , can be expressed as a Taylor

Series:
2 2 3 3 n n
CD(x):CD(xl.)Jr(x—xl.)(aq)j +(x—xl.) (8 ?j +(x—xl.) [8 ?) +...+(x_x") (8 CDJ +H
ox ), 2! ox” ). 3! ox” ). n! G
(62) _ PP x,—x 0°D - (xi+1 _xi)2 0'® T H
BN ) e NeX et 2 Ox’ : 6 ox’ l,

® Higher order derivatives are unknown and can be dropped
when the distance between grid points is small.

® By writing Taylor series at different nodes, x;_;, X, , or both x._
; and x4, we can have:

ov) @, -, o0 O-0
Po s Forward-FDS P s Backward-BDS
J il J (forward difference scheme) J J =

"\

N

N\
(5CD) D, -0, m 15t order, order of accuracy P,..=1
ox i Xt — X

+—— 2" order, order of accuracy P, =2
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’ Discretization methods (Finite Difference,

8 approximation of the first’derivative, Cont’d') -

® Polynomial fitting: fit the function to an interpolation curve
and differentiate the resulting curve.

Example: fitting a parabola to the data at points x;_;,x;, and
X:.,1, and computing the first derivative at x;, we obtain:
( o0 j O (A ) -0 (A, ) + @ [(Ax,, P~ (Ax,)
ox ), Ax;, AX, (Axi +Axi+1)
Ax, =x, =X,

2" order truncation error on any grid. For uniform meshing, it
reduced to the CDS approximation given in previous slide.

® Compact schemes: Depending on the choice of parameters q,
B, and y, 2" order and 4" order CDS, 4t order and 6" order

Pade scheme are obtained.
a(agj LT (agj + a(ag) > ﬂ (Di+1 o~ (I)i—l +y (I)i+2 = (Di—z
i+l I i—1 4Ax

i+1

Ox Ox Ox 2Ax

® Non-Uniform Grids: to spread the error nearly uniformly over
the domain, it will be necessary to use smaller Ax in regions
where derivatives of the function are large and larger Ax
where function is smooth. Save computational resources.




Discretization methods (Finite-Difference,
approximation of the second derivative)

® Geometrically, the second derivative is the slope of the line
tangent to the curve representing the first derivative.

(6@) _(@CD)
(achj e )

2
ox Xiy1 =X

Estimate the outer derivative by FDS, and estimate the inner
derivatives using BDS, we get

az_(D o W (‘xi e llim )+ D, (xi+1 — X )_ (Di(xi+1 = xi—l)
Ox’ ; (xi+1 o )2 (xi - xi—l)

For equidistant spacing of the points:
0’| D, -2, +D,
o’ )" (my
Higher-order approximations for the second derivative can be

derived by including more data points, such as x, ,, and x,,,, even
Xi 3, and X,
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/4 Dlscret|zat|on methods. (Einite Volume)- =

® [V methods uses the integral form of the conservation equation

® FV defines the
control volume NW
boundaries while FD P Py
define the
computational wwl w
nodes o o

NE

®
n,  E EE
o

€

o o

® Computational
node located at
the Control
Volume center

® Global
conservation Typical CV and the notation for Cartesian 2D
automatically
satisfied

® FV methods use the integral form of the conservation equation

| faS=3 Lk fds Sisty

1d

SW SE
®




Application of numerical methods in PDE

® Fluid Mechanics problems are governed by the laws of physics,
which are formulated for unsteady flows as initial and boundar
value problems (IBVP), which is defined by a continuous partia
differential equation (PDE) operator L (no modeling or numerical

errors, T is the true or exact solution)

L(T)=0 IC:T(x,t=0)=G,(x)  BC:T(x,,t)=H,(t)|Al

® Analytical and CFD approaches formulate the IBVP by selection
of the PDE, IC, and BC to model the physical phenomena

L,(M)=0 IC:M(x,t=0)=G, (x) BC:M(x,,t)=H,(t)|A2
® Using numerical methods, the continuous IBVP is reduced to a
discrete IBVP (computer code), and thus introduce numerical

errors.
L(S)=T  IC:S(x,t=0)=g,(x) BC:S(x,t)=h(t) | A3

® Numerical errors can be defined and evaluated by transforming
the discrete IBVP back to a continuous IBVP. A4

L (Ax])' 6’6" LModiﬁed(S =L (S):FN BC:S(xBat):HModtﬁed(t)
] Iy=0+ 1C: S(x,t = O): GModiﬁed ()C)

STruncation error 12




Application of -numerical methods in PDE

(Truncation and Discretization errors)

® Subtracting equations A2 and A4 gives the IBVP that
governs the simulation numerical error 6, =5S-M

L,(S-M)=L,(J )F—F+ZF

IC'5SN(X L= O): GModzﬁed(x)_GM(x)
BC: 5SN(xB9) HModzfed(t) HM(t)

A5

® An IBVP for the modeling error M-T can be obtained by

subtracting Al and A2:
LM(M_T):LM(aSM):FM :_LM(T)
IC: 8, (x,t=0)=G,,(x)-G,(x)
BC:éSM(xBﬂt):HM(t)_HT(t)

® Adding A5 and A6
A S T i o 2 B ] b

IC:o (x O): Grtodified (x)_GT(x)
BC:o (x39 ) HMdfd(t) HT(t)

A6

5. =S-T=5,+5,,

13




I /_

——

Numerical grids-and coordinates = =

® The discrete locations at which the variables are
to_dbe calculated are defined by the numerical
gri

® Numerical grid is a discrete representation of the
geometric domain on which the problem is to be
solved. It divides the solution domain into a
finite number of sub-domains

® Type of numerical grids: 1. structured (regular
grid), 2. Block-structured grids, and

3. Unstructured grids

® Detailed explanations of numerical grids will be
presented in the last lecture of this CFD lecture
series.

® Different coordinates have been covered in
“Introduction to CFD”

14



» — —
Components-of aumerical methods = = =

(Solution of linear equation systems, introduction)

® The result of the discretization using either FD or
FV, is a system of algebraic equations, which are
linear or non-linear

AD =0

® For non-linear case, the system must be solved
using iterative methods, i.e. initial guess—->
iterate—> converged results obtained.

® The matrices derived from partial differential
equations are always sparse with the non-zero
elements of the matrices lie on a small number
of well-defined diagonals

15
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Solution of linear.equation-systems (direct

methods)

® (Gauss Elimination: Basic methods for solving linear systems of
algebraic equations but does not vectorize or parallelize well
and is rarely used without modifications in CFD problems.

Al 1
A21

Anl

Al 2
A22

Anz

A13

An

T T

o e
Y -

e

Ay,
0

0

Al 2
A22

0

A13

o,

0

-
A

Ao

D, = <
Ann
Qi - ZAik(Dk
CD. . k=i+1
: A

i

® | U Decomposition: the factorization can be performed without
knowing the vector Q

A=A -

A;V(Di—l i A;’(Di - Ag®i+1 =

] i—1 e
AW AE AW Qi—l

=
AP

Qi* — Qi =

A=LU

® Tridiagonal Systems: 7homas Algorithm or Tridiagonal Matrix
Algorithm (TDMA) P95

Ub=Y

LY =0
0,
(Di - Qi* _A;’(Diﬂ
A4

16



Solution of linear equation systems ..
(iterative methods)

® \Why use iterative methods:
1. in CFD, the cost of direct methods is too high since the

triangular factors of sparse matrices are not sparse.
2. Discretization error is larger than the accuracy of the

computer arithmetic
® Purpose of iteration methods: drive both the residual and
iterative error to be zero

® Rapid convergence of an iterative method is key to its
effectiveness.

AD=0 ADP"=0-p" &"=0-@"

n n
Ag" =p
@d" Approximate solution after n iteration " residual

£ Tteration e€rror
17



A o

Solution of linear equa;ign systems . —
(iterative methods, cont'd)

® Typical iterative methods:

. Jacobi method

. Gauss-Seidel method

. Successive Over-Relaxation (SOR), or LSOR
. Alternative Direction Implicit (ADI) method
. Conjugate Gradient Methods

. Biconjugate Gradients and CGSTAB

. Multigrid Methods

NOUOUT DR WN =

18



Solution of linear.equation systems
(iterative methods, examples)

® Jacobi method:
k

O =DF +§—" R =0, —Zn:A..cp". (=)
j=1

y - J

i

® (Gauss-Seidel method: similar to Jacobi method, but
most recently computed values of all @, are used in all
computations.

O = Df + ZA D — ZA N (i=12,..n)

® Successive Overrelaxatlon (SOR):

O = D + =0 ZA D — ZA Y (i=12,..,n)

19
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Solution.of linear equa;iGn systems - — _
(coupled equations and their solutions)

® Definition: Most problems in fluid dynamics require
solution of coupled systems of equations, i.e.
dominant variable of each equation occurs in some of

the other equations
® Solution approaches:

1. Simultaneous solution: all variables are solved for
simultaneously

2. Sequential Solution: Each equation is solved for
its dominant variable, treating the other variables
as known, and iterating until the solution is
obtained.

® For sequential solution, inner iterations and outer
Iterations are necessary

20



~ “Solution of linear equation systemms (non- -

linear equations and their solutions)

® Definition:
Given the continuous nonlinear function f(x), find the
value x=aq, such that f(a)=0 or f(a)=3

® Solution approaches:

1. Newton-like Techniques: root finding algorithm,
faster but need good estimation of the solution.
Seldom used for solving Navier-Stokes equations.

Lbo) = e e == ]]:(();];11))

2. Global: guarantee not to diverge but slower, such
as sequential decoupled method

2dl.
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. N . O
- Solution of linear.equation systems .. — .
(convergence criteria and iteration errors)
® Convergence Criteria: Used to determine when
to quit for iteration method
1. Difference between two successive iterates

2. Order drops of the residuals
3. Integral variable vs. iteration history

4

pof|<e (foralli,j)  [A®f|<elfiy| (foralli,j)
: + =k Aq)k+1 n 42
Z‘ACI)Z.‘J] o > CI)"Z,] =y [Z(Acpf‘jl)z) s
L j I i

® Tnner iterations can be stopped when the
residual has fallen by one to two orders of
magnitude.

® Details on how to estimate iterative errors have
—peenpresented in CFD fecture.—

22,
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74 Methc;ds for unstea,dyﬁo'bléms -——

(introduction)
® Unsteady flows have a fourth coordinate direction—
time, which must be discretized.

® Differences with spatial discretization: a force at any
space location may influence the flow anywhere
else, forcing at a given instant will affect the flow
only in the future (parabolic like).

® These methods are very similar to ones applied to
initial value problems for ordinary differential
equations.

®The basic problem is to find the solution ® a short
time At after the initial point. The solution at t;=t,+ At,
can be used as a new initial condition and the solution
can be advanced to t,=t;+ At, t;=t,+ At, ....etc.

28
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" Methods for unsteady problems =~

® Methods for Initial Value Problems in ODEs
1. Two-Level Methods (explicit/implicit Euler)
2. Predictor-Corrector and Multipoint Methods
3. Runge-Kutta Methods

4. Other methods: Lagrangian and Semi-
Lagrangian scheme

dO(¢
O_fot)  ol)-o
dt
® Application to the Generic Transport Equation
1. Explicit methods
2. Implicit methods

3. Other methods

oD o0 T o°d =
—=—Uu + >
ot ox p Ox 2




Methods for-unsteady problems
(examples)

® Methods for Initial Value Problems in ODEs (explicit and
implicit Euler method)

n+l»°

explicit @™ =@" + £z, @" At | | @™ =®" + flz,,,, & JAr implicit

® Methods for Initial Value Problems in ODEs (4t order
Runge-Kutta method)
Y, +%f(tn,®”)

n+—

N :CD”+A2tf£t LD lj

n+—

\S]

O = " +A6”[f(tn,cp")+ 2f£t EaGE j+2f(t O 1]+f(fn+p@2+l)}
2 2



Methods for-unsteady-problems

(examples)

® Application to the Generic Transport Equation
(Explicit Euler methods)

Oa=P, LD +0

2Ax ,0 (Ax

: : — 27
b, = b + {_ u )2 }A Assume constant velocity

" =(1-24)D" (d—ﬁjcbf (d+ jq)j’1
2 2

= ['At Time required for a disturbance to be transmitted
p(Ax)z By diffusion over a distance Ax

ulAt Courant number (or CFL number) when diffusion
Ax negligible, Courant number should be smaller
than unity to make the scheme stable

26



= Methods for unsteady-problems

(examples)
® Application to the Generic Transport Equation
(Implicit Euler methods)

O —@ | T O+ 207"
2Ax p (Ax)’

O =@ + {— u }At Assume constant velocity

(1+2d )0 +(§—djd)fjf +(—%—djd)f_*f %

® Advantage: Use of the implicit Euler method allows
arbitrarily large time steps to be taken

® Disadvantage: first order truncation error in time
and the need to solve a large coupled set of
equations at each time step, and more
computational time for iterations.

2l
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Treatment of Advection"Equations

= Lagrangian Approach: Tracks individual fluid parcels as they move through space.
= Eulerian Approach: Focuses on fixed points in space and examines how fluid
properties change at those points.
= Semi-Lagrangian Approach: combines both Lagrangian and Eulerian approaches,
Advantages: stability, accuracy;
Disadvantages: interpolation errors, complexity;
Applications: Weather Forecasting, Climate Modeling, Ocean Engineering.

-y,

« Inthe method, the advection of some quantity Cis described by:
DC __
e + ueVC =0
» Inthe pure formulation,
dc ’
e
dx = ;
T u(x, t).
» The scheme
Cn+1 = (G
S R
At
dx

=== WOyt xR =R e e

~“where“gand~¢—denote arrival and departurepoint, respectively.= - —

28



Semi-Lagrangian-Scheme

Find the departure point, X, of the fluid particle arriving at the grid point x"*!

r e r Arrival
o ¥ At " Exact Departure Xa
X=X ——u(x,,t"), Oa| o 2

2 f At /,#

o n At .)’ T

Xd — Xa o AtU(X, vk —) Estimatgd Deparnurf” 4

2
7 & & 7
° (Jin and Chen, 2015, IINMHFF)

The departure point usually does not coincide with the grid point, the
solution value needs to be interpolated at the departure point.

Cn+1 (Xa ’tn+1) = Cc’; (Xd ,Z_n)

29
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/7 Semi-Lagrangian-scheme for VOF= —~

« Unconditionally stable: allow very large CFL for significant speedup of overall computation
« Comparable to an benchmark Eulerian VOF method in terms of interface position errors

- Improved with regard to mass conservation, even with much larger CFL numbers

* Z. Wang, J. Yang, F. Stern, A simple and conservative operator-splitting semi-Lagrangian volume-of-fluid advection scheme, J. Comp. Phys.,
in review, 2012

Semi-Lagrangian discretization of VOF Eguation

AdF . Frt+] _ F;z B
] it ’ , At
& u(x,t). X - xG
dt At
The “departure cell” of each computational cell is tracked backward instead
of the grid point, which can be determined by locating the two “departure
faces” of the cell in each spatial direction.

0,

=u(x,t),

VOF reconstruction

Total volume in the departure cell The VOF value updated by
Vol = Vol. + Vol, + Vol Fﬁ:-l-]{xul 1y — Vol (X, t™) _
' U | — zar| Ay R S R R
where tar—1 A compressed departure cell

Vole = —(F"ArAy)iy s+ Y (F*AzAY)s;. S
=i

30


Presenter
Presentation Notes

Directionally split backward time integration, which simplifies definition and locating of departure volume: a directionally expanded/compressed grid cell
Piecewise linear interface calculation (PLIC) scheme for volume fraction evaluation in a departure cell, which preserves sharp interface
Conservation of volume fraction is preserved during directional sweeps, which ensures mass conservation after sweeping all directions

Two key steps for the semi-Lagrangian method: backward time integration to locate the departure point (“departure cell” here)and interpolation of the value at the departure point. 

The figure shows the backward integration of cell faces for the semi-Lagrangian method. The “departure cell” is defined as the region enclosed by the departure faces and the horizontal grid lines, which can be stretched or compressed when it is moved to the arrival cell in each single spatial direction.




Semi-Lagrangian Scheme for the
Navier-Stokes Equations

Navier-Stokes equations in

Laerangian form:

= fl—u—z—l—v-(—pI+T)+g
dt p
V-u=0

Semi-Lagrangian time-discretization using a second-

order scheme: 3 | e e
e | e |

1
=[—V-(-pI+T)+g]""
- [p (=pI+T)+g]

dx
—=u"(x,1), x(t"")=x_
- (x,2), x(t"")

The values at the departure points can be obtained using the same

ENO scheme as in the level set equation.
31
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Solution of Navier-Stokes equations

—

® Special features of Navier-Stokes
Equations

® Choice of Variable Arrangement on the
Grid

® Pressure Poisson equation

® Solution methods for N-S equations

82
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/ Solution of N-S equations(special features)™
J Navier-Stokes equations (3D in Cartesian coordinates)

Local ﬁ Plezometrlc pressure gradient m
acceleration

® Discretization of Convective, pressure and Viscous terms

® (Conservation properties: 1. Guaranteeing global energy conservation in a
numerical method is a worthwhile goal, but not easily attained;

2w Incompressible-isothermal-flows;-significance-is-kinetic-energy;-3.-heat

transfer: thermal energy>>kinetic energy

88
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- Solution of N-S-equations (choice of variable.. —
arrangement on the grid)

® (ollocated arrangement:
1. Store all the variables at the same set of grid points and to use the
same control volume for all variables
2. Advantages: easy to code
3. Disadvantages: pressure-velocity decoupling, approximation for terms
® Staggered Arrangements:
1. Not all variables share the same grid

2. Advantages: (1). Strong coupling between pressure and velocities, (2).
Some terms interpolation in collocated arrangement can be calculated with
interpolation.

3. Disadvantages: higher order numerical schemes with order higher than
2d will be difficult

4

y 4

‘ Colocated

Staggered Pl e.| ¢o|-0)-0 |0 —
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Solution of Navier-Stoke’s equations.. —
(Pressure Poisson equation)

® \Why need equation for pressure: 1. N-S
equations lack an independent equation for the
pressure; 2. in incompressible flows, continuity
equation cannot be used directly

® Derivation: obtain Poisson equation by taking the
divergence of the momentum equation and then
simplify using the continuity equation.

® Poisson equation is an elliptic problem, i.e.

pressure values on boundaries must be known to
compute the whole flow field

o (ap)__ o [ouu,)
ox, \ Ox, = Ox, | Ox,

—_—

88
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, - Solution metheds-for t,hgﬁa\-/ieTTStokQS —
equations

® Analytical Solution (fully developed laminar pipe flow)
® \orticity-Stream Function Approach: eliminate pressure term

® The SIMPLE (Semi-Implicit Method for pressure-Linked Equations)
Algorithm:

. Guess the pressure field p*

Solve the momentum equations to obtain u*,v*,w*

Solve the p’ equation (The pressure-correction equation)

D e e

. Calculate u, v, w from their starred values using the
velocity-correction equations

6. Solve the discretization equation for other variables, such as

temperature, concentration, and turbulence quantities.

7. Treat the corrected pressure p as a new guessed pressure p*,

return to step 2, and repeat the whole procedure until a

converged solution is obtained.

U1-I>SJO!\JI—L

- — ——

36



Example (lid-driven cavity)

® The driven cavity problem is
a classical problem that has _
wall boundaries surrounding
the entire computational
region.

e Tncompressible viscous flow
in the cavity is driven by the
uniform translation of the
moving upper lid.

e the vorticity-stream function 2
method is used to solve the x
driven cavity problem. —

S



Example (lid-driven cavity, governing

equations)
ou
=0
ox a_':”_
ov Ou 5 — U
ou ou_ ou_ Op [qu 62u] == Y
+u +v — +Vv —2+—2 ax ay
ot ox Oy @ Ox ox~ 0Oy 8_W__v
v v v g (v ox
+u—+v ———+vy +
ot Ox Oy oy ox> oy’
A N S S N N S DL A NN NSNS
e Y A A T e TR
2 2 52 82
008,00 L0 00) 2y oy,
Ot oy Re,\ox” oy ox~ Oy
0p,0p_,f2v)ov) [ov 2 re UL
ox’ oy ox* \ ay? | | oxoy T

L0¢  0¢ _owg), avg)
Ox oy Ox oy
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Example-(lid-driven cavity,
boundary conditions)

yw = 0 on all walls

51// | o)
=7 A O

7Y, +olan)

2(‘:” wil V/w)
(An)

The top wall
2(Ying — Uy yAY — Ying-
. =
a_p :_La_é/‘ ps+1,w_ps—l,w i 1
ds'" Re, on'" 2As Re,

The other
Three walls

|

For wall pressures, using the tangential momentum
equation to the fluid adjacent to the wall surface, get:

* s 1s measured along the wall surface and n is normal to it

* Pressure at the lower left corner of the cavity 1s assigned 1.0

% 3é;/s,w i, 4é/s,w+1 - é/s,w+2
2An

39



Example (lid-driven_cavity, discretization
methods)

1
gzn; - é/i’jj e uzil,jé/ilj-l,j > ”?—1,1'4’;1—1,]' = VZj+1§:j+1 - VZj—léV:j—l

At 2Ax 2Ay
ﬁ - 1 é/i,jrl,j = 241",1]' 3 in—l,j é/ir,lj+l - 24/1",1] - i’,lj—l
15t order upwind for - 2 % 2
. s e Re, (Ax) (Ay)
time derivative

n n n n n n
Wi+1,j ~ 29”1',]' e Wi—l,j 4 l//i,j+1 ~ 2l/ji,j > l//i,j—l

(Av) e e
pin+1,j _2pi,fj £l pin—l,j = pir,lj+1 _2ij +pi’fj—1
(Ax)’ (Ay)’
2
_5 Wia,j _2Wi,j W W _2'//1',]' R ) e .5 P P e s e AT
(Ax)® (Ay)° 4AxAy

21d order central.difference scheme.used for.all spatial derivatives

40



(/4 Examble(lid-driveﬁ cavity, - ——-
solution procedure)

Specify the geometry and fluid properties
Specify initial conditions (e.g. u=v=¢ = w=0).
Specify boundary conditions

Determine At

Solve the vorticity transport equation for &
Solve stream function equation for ¥
Solve for u"! and vn+l

Solve the boundary conditions for £"*' on the walls

Continue marching to time of interest, or until the steady state
is reached.

n+l

e AR N A S SR A T
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Example (lid-driven cavity, residuals)

1 R ! prHl — gt < 1x 1078
NT o AT 2: gfﬂ—§7-31X10% and NIXNJ = £ g = 1
N]XNJ l_l J_l ’] ’] l=1,]=1

i=NI,j=NJ

Residual of stream function
Residula of voricity function

Residuals

11 I | I | I | I | I L1 11 I L1 11 I L1 1 1 I L1 1 1 I L1 1
100 200 300 400 500 600 70O
lteration number
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0.0018
-0.0009
-0.0064
-0.0119
-0.0174
-0.0228
-0.0283
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n cavity

0.9
0.8
0.7
0.6
Y 0.5
0.4
0.3
0.2
0.1

, sample results)

O T o e e o~ N =

IEEE AREEE RERAN EERRE RERRE REREE RRREE LRERE RRERE RREE:
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\

0 0.1 02 03 04 05 0.6 0.7 0.8 09 1

N AT e T2 )
027030405 0.6 0.7 0.8 0.9
X

1

Level

29

1.1

zeta

11.2711
8.3232
5387/58
2.4273

-0.5206

-3.4686

-6.4165

-9.3644

-12.3124
-15.2603
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-30.0000
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Some good books

. J. H. Ferziger, M. Peric, “ Computational Methods for Fluid
Dynamics,” 3" edition, Springer, 2002.

. Patric J. Roache, “Verification and Validation in

Computational Science and Engineering,” Hermosa
publishers, 1998

. Frank, M. White, “Viscous Fluid Flow,” 3 edition,
McGraw-Hill Inc., 2006
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