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Chapters 1 Preliminary Concepts & 2 Fundamental Equations of Compressible 

Viscous Flow 
 

(5) Vorticity Theorems 
 

The incompressible flow momentum equations focus 

attention on V and p and explain the flow pattern in terms 

of inertia, pressure, gravity, and viscous forces.  

Alternatively, one can focus attention on ω and explain 

the flow pattern in terms of the rate of change, deforming, 

and diffusion of ω by way of the vorticity equation.  As 

will be shown, the existence of ω generally indicates the 

viscous effects are important since fluid particles can only 

be set into rotation by viscous forces.  Thus, the 

importance of this topic (for potential flow) is to 

demonstrate that under most circumstances, an inviscid 

flow can also be considered irrotational.   

 

1.  Vorticity Kinematics 

 
ˆˆ ˆ( ) ( ) ( )y z z x x yV w v i u w j v u k = = − + − + −  

 

 
j jk

i ijk

k j k

u uu

x x x
 

  
= = −     

  

123 321 231

213 321 132

1

1

0ijk

alternating tensor

otherwise

  

  



= = =

= = = −

=  

 = 2  the angular velocity of the fluid element 

 

 (i, j, k cyclic)



2 

 

A quantity intimately tied with vorticity is the circulation: 

 

  

V dx =    

 

 

Stokes Theorem: 

 

 
A

a dx a dA =     

 

 
A A

V dx V dA ndA =  =   =     

 

Which shows that if ω =0, i.e., if the flow is irrotational, 

then Γ = 0 also. 

 

Vortex line = lines which are everywhere tangent to the 

vorticity vector. 
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Next, we shall see that vorticity and vortex lines must 

obey certain properties known as the Helmholtz vorticity 

theorems, which have great physical significance.   

 

The first is the result of its very definition: 

 

( ) 0

V

V





=

 =   =
 

 

i.e., the vorticity is divergence-free, which means that 

there can be no sources or sinks of vorticity within the 

fluid itself. 

 

Helmholtz Theorem #1:  a vortex line cannot end in the 

fluid.  It must form a closed path (smoke ring), end at a 

boundary, solid or free surface, or go to infinity. 

          

   
 

 

The second follows from the first and using the 

divergence theorem: 

 
0

A

d n dA 


  =  =   

 

Vector identity 

Propeller vortex is known 

to drift up towards the free 

surface. 
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Application to a vortex tube results in the following. 

 

1 2

1 2

0
A A

n dA n dA  +  =

− 

   

Or  Γ1= Γ2 

 

Helmholtz Theorem #2: 

 

The circulation around a given vortex line (i.e., the 

strength of the vortex tube) is constant along its length. 

 

This result can be put in the form of a simple one-

dimensional incompressible continuity equation.  Define 

ω1 and ω2 as the average vorticity across A1 and A2, 

respectively. 

ω1A1 = ω2A2 

 

which relates the vorticity strength to the cross-sectional 

area changes of the tube. 

 

2.  Vortex dynamics 

 

Consider the substantial derivative of the circulation 

assuming incompressible flow and conservative body 

forces. 

 

Minus sign due to 

outward normal 



5 

 

D D
V dx

Dt Dt

DV D
dx V dx

Dt Dt


= 

=  + 



 
 

 

From the N-S equations we have 

 

21DV p
f V

Dt


 


= − +   

( ) 2p
F V


= − + +   

 

Also, 
D Dx

dx d dV
Dt Dt

= =  

 

( ) 2/

1
( )

2

D
F p d x V d x V dV

Dt
dp

d V VdF

 




 = − +  +   +     

− −

  



 

2 21

2

dp
dF dV V d x



 
= − − + +   

 
   

 

 

2D
V dx dx

Dt
  


=   = −     

 

    ( ) ( ) 2

0

V V V



  =  −

=
 

Define Ff −=  for 

the gravitational body 

force F=ρgz. 

=0 since integration is around a closed 

contour and F, p, & V are single valued! 
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Implication:  The circulation around a material loop of 

particles changes only if the net viscous force on those 

particles gives a nonzero integral. 

 

If 0 =  or 0=  (i.e., inviscid or irrotational flow, 

respectively) then  

0=


Dt

D
 

 

Kelvins Circulation Theorem:  for an ideal fluid (i.e., 

inviscid, incompressible, and irrotational) acted upon by 

conservative body forces (e.g., gravity) the circulation is 

constant about any closed material contour moving with 

the fluid, which leads to: 

 

Helmholtz Theorem #3:  No fluid particle can have 

rotation if it did not originally rotate.  Or, equivalently, in 

the absence of rotational forces, a fluid that is initially 

irrotational remains irrotational.  In general, we can 

conclude that vortices are preserved as time passes.  Only 

through the action of viscosity can they decay or 

disappear.   

 

Kelvins Circulation Theorem and Helmholtz Theorem #3 

are very important in the study of inviscid flow.  The 

important conclusion is reached that a fluid that is initially 

irrotational remains irrotational, which is the justification 

for ideal-flow theory. 

The circulation of a 

material loop never 

changes. 
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Once vorticity is generated, its subsequent behavior is 

governed by the vorticity equation. 

 

N-S  ( ) 2/
V

V V p V
t

 


+  = − + 


   neglect f  

 

Or  ( ) 21
/

2

V
V V V p V

t
  

  
+  −  = − +  

  
 

 

The vorticity equation is obtained by taking the curl of 

this equation.  (Note ( ) 0  = ). 

( ) 2V
t


  


−  = 

  

     ( ) ( ) ( ) ( )V V V V   =  −  −  +   

 
   Therefore, the transport Eq. for ω is: 

 

  
( ) 2( )

D

Dt

V V
t




   


+  =  + 

    

 

 

2

x y zu v w V
t x y z x y z


     

         
+ + + = + + +    

         
 

 

 

Rate of viscous 

diffusion of ω 
Rate of change of ω =    

Rate of 

deforming vortex 

lines 
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2x x x x
x y z x

Stretching
turning

u u u
u v w

t x y z x y z

   
    

      
+ + + = + + + 

        

2y y y y

x y z y

v v v
u v w

t x y z x y z

   
    

      
+ + + = + + + 

        

2z z z z
x y z z

w w w
u v w

t x y z x y z

   
    

      
+ + + = + + + 

        

 

Note:   (1) Equation does not involve p explicitly 

  (2) for 2-D flow ( ) 0V  =  since ω is perp. to V  

   and there can be no deformation of ω, i.e.  

   
2D

Dt


 =   

 

To determine the pressure field in terms of the vorticity, 

the divergence of the N-S equation is taken. 

 

( ) 2/
V

V V p V
t

 
 

  +  = − +   
 

 

 2( / )p V V = −     Poisson Eq. for p 

 

( )2 21

2
V V V V  = −   +  +     

does not depend explicitly on ν. 
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Derivation of pressure Poisson equation: 

 

Three vector identities to be used: 

 (1) ( ) ( )
1

2
 =   −  V V V V V V  

 (2) ( ) ( ) ( )  =   −  a b b a a b  

 (3) ( ) ( )2  = − + a a a  

 

Pressure Poisson equation in vector form: 

 ( )2 p



 
 = −  

 
V V  

  ( ) ( )
1

2

 
= −   −   

 
V V V V  

  ( ) ( )21

2
= −   + V V V ω

 

  ( ) ( ) ( )21

2
= −   +   −  V V ω V V ω  

  ( ) ( )( )21

2
= −   +  −   V V ω ω V V

 

  ( )2 21

2
= −   +  −  − + V V ω ω V V V( ) 

   

  ( )2 21

2
= −   +  + V V V V ω ω  

 

Pressure Poisson equation in tensor form: 

 ( )2 2 21

2

p



 
 = −   +  +  

 
V V V V ω ω  
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 ( ) ( ) ( )
( )

( ) ( )
221

2
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j j k k i i
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u e
u e u e u e

x x x x


 = −  +  +   
    

V V
 

 ( )
221

2

k k n
j k jk i ik ijk i lmn l

i i j j j m

u u u
u u u e e

x x x x x x
   

     
= − +  +            

 

 
( )

( )
2 2

1

2

j j i k n
i ijk lmn i l

i i j j j m

u u u u u
u e e

x x x x x x
 

    
= − + +         

 

 ( )
2

1

2

i k n
j j i ijk lmn il

i i j j j m

u u u
u u u

x x x x x x
  
      

= − + +             
 

 ( )
2

1
2

2

j i k n
j i jm kn jn km

i i j j j m

u u u u
u u

x x x x x x
   

    
= − + + − 

      
 

 
2

j i k n k n
j i jm kn jn km

i i j j j m j m

u u u u u u
u u

x x x x x x x x
   

      
= − + + − 

        
 

 
2 2

j j j ji k k k
j i

i i i i j j j j j k

u u u uu u u u
u u

x x x x x x x x x x

       
= − + + + −            
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x x


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3. Kinematic Decomposition of flow fields 

 

Previously, we discussed the decomposition of fluid 

motion into translation, rotation, and deformation.  This 

was done locally for a fluid element.  Now we shall see 

that a global decomposition is possible. 

 

Helmholtz’s Decomposition:  any continuous and finite 

vector field can be expressed as the sum of the gradient of 

a scalar function   plus the curl of a zero-divergence 

vector A.  The vector A vanishes identically if the original 

vector field is irrotational.   

 

V V V
 

= +  

Where:   
0

V

V





 =

=
  

 

 

 

→  V


=  

 

If  0V V V
 

 = + =  

Then 
2 0 =   The GDE for  is the Laplace Eq. 

And  V A

=    Since    ( ) 0= A  

 

The irrotational part of 

the velocity field can be 

expressed as the gradient 

of a scalar. 
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2 ( )

V A

A A


 = = 

= − + 
 

i.e.  −= A2  

The solution of this equation is  = d
R

A


4

1
 

Thus 3

1

4

R
V d

R

 




= −   

Which is known as the Biot-Savart law. 

 

The Biot-Savart law can be used to compute the velocity 

field induced by a known vorticity field.  It has many 

useful applications, including in ideal flow theory (e.g., 

when applied to line vortices and vortex sheets it forms 

the basis of computing the velocity field in vortex-lattice 

and vortex-sheet lifting-surface methods). 

 

The important conclusion from the Helmholtz 

decomposition is that any incompressible flow can be 

thought of as the vector sum of rotational and irrotational 

components.  Thus, a solution for irrotational part V
  

represents at least part of an exact solution.  Under certain 

conditions, high Re flow about slender bodies with 

attached thin boundary layer and wake, V   is small over 

much of the flow field such that V
  is a good 

approximation to V .  This is probably the strongest 

justification for ideal-flow theory: incompressible, 

inviscid, and irrotational flow. 

Again, by vector identity 


