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Viscous Flow in Ducts

Laminar Flow Solutions
Entrance, developing, and fully developed flow
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Fig. 66 Developing
velocity profiles and
pressure changes in the

entrance of a duct flow. 0 1
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Le=f(D,V, p, 1)
I1, theorem — /) = f (Re) f(Re) from AFD and EFD

Laminar Flow: Recit ~ 2000 Re <Regit laminar
L /D =.06Re Re > Reqit  unstable
Re > Reyans  turbulent

L =.06Re_ D~138D

emax

Max Le for laminar flow
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Turbulent flow:

Re Le/D

4000 18 L,/D ~4.4Re"

10* 20

10° 30 _

106 44 (Relatively shorter than for

107 65 laminar flow)

108 95

Laminar vs. Turbulent Flow

1200

Turbulent
flow:
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Reynolds 1883 showed that the difference depends on Re = VD/v
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Laminar pipe flow:

1. CV Analysis

gx=psing

)
Fig. 6.7 Control volume of steady, \ z,

full;lr developed flow between two l
S€ctions in an inclined pipe. Y e e e ———————

Continuity:
0= [pV-dA — pQ; = pQ, = const.
CS

eV, =V, since A=A, p=const,andV =V,_,
Momentum:

YE, = (p; — pp) mR? — 1,,2nRL + ywR%Lsin ¢ = m(B,V, — 1 V1)

Ap W Az/L =0
Ap7R’ — 7 27RL + yaR’Az = 0

Ap+)/AZ:27—F\“>“L
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2Ty, L
Y R
or
Ry Ah Ry dh R d
W= LT m s @YD)

For fluid particle control volume:

r d

=5 P+yz)

l.e., shear stress varies linearly in r across pipe for either
laminar or turbulent flow.

Energy:
P, P, o
y 29 y 29
ah=h =%k

. once Tw IS known, we can determine piezometric
A - d
pressure p = p + yz drop, I.e., — (p +vyz).
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In general, roughness
r =1 (o,V, U, D,g‘{
IT; Theorem
87, -
, = T = friction factor = f(Rep,&/D)
oV

where Rep _Vb
3

2

Ah=h =f Lve Darcy-Weisbach Equation
- D 2¢g

f (Rep, /D) still needs to be determined. For laminar flow,
there is an exact solution for f since laminar pipe flow has
an exact solution. For turbulent flow, approximate solution

for f using log-law as per Moody diagram and discussed
later.
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2. Differential Analysis

Continuity:
V-V =0 V=a—+l—+—

Use cylindrical coordinates (r, 0, z) where z replaces x in
previous CV analysis.

12(r\/ )+Ei(v )+8vz
ror " ree Y ez

=0

where V = v,.é, + vgég + 1,6,

Assume Vo =0 i.e. no swirl and fully developed flow

A

— =0, which shows V; = constant = 0 since v, (R)

0z
=0
#V =1,6, =u(r)g,
Momentum:
DL _ az+ V-VV=-V(p+vyz) + uv?v
th_pat py - vV = pTYZ uv=v
Where:

L I N R
~Urar TV 50 T Y2,
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Z equation:

[au+v VV]— 0 +yz) + uv?
Pl TV VY= az(p yz) + uV<u

Ju 10u Ju

=Vt Ve gt Vi, =0

4%

0=- —( P+72Z)+ ylé(r a—uJ .. both terms must be constant

) ror\ or
@ G
u o
r ar( )
:>r8u_ 1 8p 2. A
or 2u 62
ou 1 8p LA
o 2u 82
=>U=i@r2+Alnr+B P=p+yz
41 0z
u(r=0) finite > A=0
u(r=R) =0 > B= fﬂig
u(r)_ d_ﬁ Umax(lr/RZ) UmaX=U(O)=—R—@

4u dz 4u dz

7
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avr .
Tyy = ,u — fluid shear stress
_Trop ou_r 0P
20z where or 2u0z
T =‘u0_u‘ __Ma_u :_Ea_p As per CV analysis
W oyl orl,—p 2 0z
du dr du du
y = R — T, — - -
dy dy dr dr

Note: 7 =7, = H&, = _zﬂwe

I.e., only one component of vorticity which also varies linearly
across the pipe with its maximum at the wall.

N

R 4
Q:_[u(r)27zr dr = 7R ﬂ 1
] 8u dz 2

Note: for given piezometric pressure drop the flow rate is
inversely proportional to the viscosity and proportional to the
radius to the fourth power such that doubling the pipe radius

produces 16-fold increase in the flow rate: Poiseuille’s law
A

Q _ 1 _ _R2 d p VS. Vave = .53Umax

~u_ 7R?

¥ gR? 2 ™ 8u dz for u(r)=Umax(1-r/R)*2
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Substituting V = Vawe

;. 87,
pV 2
= —Ea_ﬁ _E SMVave 4‘,uVave suv
Ty = =55 =~ X e = —
Substituting t,, Into f
f 64y 64
oDV Rep
Cf = TW :i: 16
2
2 2
phoh = f LV _ 84w L VT S2uV

D 29 pDV D’ 29  pgD?

for Az=0 — ApocV

Both f and Cs based on V? normalization, which is

appropriate for turbulent but not laminar flow. The more

appropriate case for laminar flow is:

P,, =C; Re=16

Oc;

P, =fRe=64 for pipe flow

Poiseuille # (P, ){

9
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%08 Friction factor vs. Reynolds number
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FIGURE 3-7 )
Comparison of theory and experiment for the friction factor of air flowing in small-bore tubles. [Afrer Senecal
and Rothfus (1953).]
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Compare with solution for flow between parallel plates with pressure gradient

U= () o--w-:%;:o; Weoo sl doo Bz=n.
< v n o e

Maasyawizo S Ma=o “-MML»;EMLW
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- A
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Non-Circular Ducts: Exact laminar solutions are available
for any “arbitrary” cross section for laminar steady fully
developed duct flow.

O:_ px+1u(uw +uzz)
u(h)=0
2 A
Re only y*:y/h 7 =7/h u=u/U U:%(_px)

enters
through
stability Related Umax

d 2 . .
e Vu=-1 Poisson equation N
u1)==0 Dirichlet boundary condition

Note: No characteristic velocity and length scale for fully developed flow therefore
N

use characteristic duct width h and U with units’ L/T formed from p, hand p, using
dimensional analysis. Also, pressure force/vV (—p,h3) is balanced by net viscous
force/V (uUhR3 /h?) their ratio provides measure Umax.

BVP can be solved by many methods such as complex variables and conformed
mapping, transformation into Laplace equation by redefinition of dependent
variables, and numerical methods.

14
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Figure 11.1 Parallel flow in an elliptical tube.
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FIGURE 3.7
Some cruss motions Jor which fully developed fow solutions are known ; for still
moee, consult Berker (1863, pp. 670.).
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Fio. 77. Velocity disteibution in a rectangular conduit,
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Midplane

(@) ®)

Fig. 6.16 Illustration of secondary turbulent flow in noncircular ducts:
(a) axial mean velocity contours; (b) secondary flow in-plane cellular
motions. (After J. Nikuradse, dissertation, Gottingen, 1926.)

For rectangular and triangular ducts, for laminar flow tw
largest mid-points of the sides and zero in corners, whereas
for turbulent flow tv nearly constant along the sides and
falls sharply to zero in the corners due to secondary flows
Induced by the turbulence anisotropy. For laminar flows in
straight ducts secondary flows are absent. As a result the
hydraulic diameter concept works poorly for laminar vs.
turbulent flow.

18
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Elliptical section: y*/a* + 2*/b* = 1:

ETTES
2 B o dxa+b’ 2 b o

Q”’@( Zi) "

Rectangular section: —a = y = a, -b=z=b:

o o cosh(imz/2a)
u(y, z) = 1602( dx) DI et b ”’Q[l = ]
par

=138, cosh (iwh/2a)
% cos(imry/2a) (3.48)
f3
4ba’ ( dﬁ)[l _192a ganh(fwb/za)]
Q L —3-;“ dx ‘ﬂsb =135, .~ ’*5
Equilateral triangle of side a: coordinates in Fig. 3-0:

—dp/dx

u(y, z) = —\‘}‘2’!—(2 = :,1‘50\/3)(3)'2 -7
2V3ap (3.49)
a*V3 _dp )

Q = 320p \ dx

Circular sector: —3¢ = 0 = +%a. 0O=r=a
dﬁ/dx[ 2(1 _cos 20) _ 16a%
,r cOos o w
cos (imf/«) ]
+1)2
% E (-1 ’/( ) i(i + 2afm)(i — 2a/7)

u(r, @) =

i=13.3, .
hak: _.d_.’Z) (3-50)
Q= du\  dx
tne —a 32 < _ | ]
§i 4 ﬂ's I=1.35... 12( + 2(1/’")2(! — 2&/7")

19
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Concentric circular annulus: b = r = a:

—dpfdx| , . In(a/r)
u(r) = —-—:ﬁ{——[a‘ -+ (a0 — bzm]

. (3-51)
SO /L @. 4 P M):]
0= 8u\ dx “ In(a/b)
This is but a sample of the wealth of solutions available. The fc?rmula for a con-
centric annulus is important in viscometry, with a measured ‘Q being used to calc_;u-
late p. To increase the pressure drop, the clearance (a — b) is held small, in which

case Eq. (3-51) for @ becomes the difference betwccp two nearly c.qual numbers.
However, if we expand the bracketed term [ ] in a serics, the result is

2 &
(@ — b%) - = 2ba— b+ 5@— b 4+ Oa— B

so that Q for small clearance is seen to be cubic in (a = b).

The eccentric anpulus in Fig. 3-9 has practical applications, for example,
when a needle valve becomes misaligned. The solution was given by Piercy et al.
(1933), using an elegant complex-variable method which transformed the geome-
try to a concentric annulus, for which the solution was already known, Eg. (3-51).
We reproduce here only their expression for volume rate of flow:

: : & §
Q= %(-%) [a‘ == —;;CZ_MQ Y . ki ] (3-52)

Ssinh(nf — na)
where M= (F -d)" F=a-—_%’cﬁ
_1, F+M _1, F—c+M
e=ohr—ym P=3BF—c—n

Flow rates computed from this formula are compared in Fig. 3-10 to the concentric
resalt O, from Eq. (3-51). It is seen that eccentricity substantially increases the
flow rate, the maximum ratio of Q/Q,.q being 2.5 for a narrow annulus of maximum
eccentricity. The curve for /a = 1 can be derived from Jubrication theory:

Narrow annulus: 0 =1+ 3z ; (3-53)
X Q‘—,o 2\a— b

The reason for the increase in  is that the fluid tends to bulge through the wider
side. This is illustrated for one case in Fig. 3-11, where the wide side develops a set
of closed high-velocity streamlines. This effect is well known to piping engineers,
who have long noted the drastic leakage that occurs when a nearly closed valve
binds to one side.

20
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25 — Concentric
annulus

20 -
i)
°
Q
i
&
16
15
< Circular sector
10 L | ) | L 1 1 |
0.0 0.2 04 0.6 0B
. 2]
a
FIGURE 3-13

For laminar flow, P,
varies greatly,
therefore it 1s better to
use the exact solution
vs. Dy as discussed
next.

Comparison of Poiseuille numbers for various duct cross sections when Reynolds number is scaled
by the hydraulic diameter. [ Numerical data tzken from Shah and London (1978).]

Table 6.3 Laminar Priction Factors
for 2 Concentric Anmulus

Ma fRey Doglldy, = L
o 0 1.0
T T 913
LIEEHIH] T1.78 (.80
HE LT T4 58 (EST
L1 #0011 0,795
s #6727 1,742
i w937 716
0z 0238 1645
L3 8471 1.6T6
(& 0559 06To
N4 9597 0 a7
1.0 940 .667

Twi=>Two

Table 6.4 Laminar Friction
Constants f Re for Rectangular and
Triangular Ducts

Rectangular Isosceles triangle
b <
a

bla JRep, 0, deg JRep,
0.0 96.00 0 48.0
0.05 89.9] 10 516
0.1 84.68 20 529
0.125 82.34 30 533
0.167 78.81 40 529
0.25 72.93 50 52.0
0.4 65.47 60 51.1
0.5 62.19 70 49.5
0.75 57.89 80 48.3
1.0 5691 90 48.0
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1. Concept of hydraulic diameter for noncircular
ducts

For noncircular ducts, tw= f(perimeter); thus, new

87
definitionsof f =——7% and C, = ZTWZ

Define average wall shear stress
1P :
=5 [z, ds ds=arc length, P = perimeter
0
Momentum:

ApA— TWPL+7AL(AZJ 0
L

L
Ah=A(p/ _ v
(p/y+2) AP

T, L

A/P =Rn= Hydraulic radius (=R/2 for circular pipe and Ah = RI2

23
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Energy:

Tul
AP

Ah=h, =

N
- AAhy —Aydh -Ad(p+sz) Al dp
TW_E L = P &— P dx _E _dx non-circular duct

Recall for circular pipe:

Rdp  Ddp

" 2 dx 4 dx

In analogy to circular pipe:

= _Al_dp) _Duf_dp)\ _ A _Di_ p _ %4 Hydraulic
w ™ pl|l  ax 4 dx P 4 h— p  diameter

For multiple surfaces such as concentric annulus P and A
based on wetted perimeter and area

_~ 8T _~ VD,
F =T = F(Rep,e/D;)  Rep, ="
- 2 . 2

anop Tk AT L LV

R, 8 R, D,2
However, accuracy not good for laminar flow f =64/Rep,

(about 40% error) and marginal turbulent flow ]_f(ReDh, g/
D,) (about 15% error).

24
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a. Accuracy for laminar flow (smooth non-circular

pipe)

Recall for pipe flow:

P, =C,Re=16
Poiseuille# (P,){
P, = fRe=64

Recall for channel flow:

_28u_ 48 _ 96
pvh  Re, Re,
—
Rep,

C,=fld=

6y 12 24

‘7 Vh Re, Re,
—

Rep,

P =C,Re, =24

Oc;

R =fRe, =96

Poiseuille # (PO){

Therefore:
Pch pipe . POf pipe _ 16 _ 64 _ g
Pch channebasedon D, I:)Of channebasedonD, 24 96 3

Thus, if we could not work out the laminar theory and
chose to use the approximation f Re, ~64or C; Re, ~16
we would be 33 percent low for channel flow.

25
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b. Accuracy for turbulent flow (smooth non-
circular pipe)

For turbulent flow, Dn works much better especially if
combined with “effective diameter” concept based on ratio
of exact laminar circular and noncircular duct Po numbers,

|e, 16/500, or 64/501‘ .

First recall turbulent circular pipe solution and compare
with turbulent channel flow solution using log-law in both
cases

Channel Flow

h *
V — 1Iu*{1 n(n=yu B}dY Y=h-y wall coordinate

h 0 | K v
:u*[l.nm 5_1]
K Y K
AA .. 4(2hB)
D.=—=1im =4h p— :
" T T Eae 9B 14N h=half width

. VD, V4h
Define Rep, = U“ =

v

26
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f—1/2 _ 2|Og(ReDh fl/2)_1.19 (USlng Dh)

X
Very nearly the same as circular pipe

7% to large at Re = 10°

4% to large at Re = 108
Therefore, error in Dn concept relatively smaller for
turbulent flow.

Note  f**(channel) =2log(0.64Re, f**)-0.8

Rewriting such that exact agreement pipe flow with Rep
replaced by 0.64Repn

P, (circle) =16
Define Deftective = 0> Oh ~ P, (channel)=24 "

\ J
Y

Laminar solution

(therefore, improvement on Dy is)

P, (circle) 5 Pyc, (circle)

" Py (non—circular) " Py (non-circular)

Or

B 64 D - 16
P, (non—circular) " Psc, (non —circular)

L%

N /

From exact laminar solution

eff




