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Chapter 5 Dimensional Analysis and Modeling

The Need for Dimensional Analysis

Dimensional analysis is a process of formulating fluid
mechanics problems in terms of nondimensional variables
and parameters.

1. Reduction in Variables:
F = functional form

If F(A1, Az, ..., An) =0, A = dimensional
variables

Then f(ITy, Iy, ... I[1;<n) =0 I'Tj = nondimensional
parameters

Thereby reduces number of =11 (A)

experiments and/or simulations I.e., ITj consists of

required to determine f vs. F nondimensional

groupings of Ai’s
2. Helps in understanding physics
3. Useful in data analysis and modeling
4. Fundamental to concept of similarity and model testing

Enables scaling for different physical dimensions and
fluid properties
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Dimensions and Equations
Basic dimensions: F, L, and tor M, L, and t
F and M related by F = Ma = MLT"

The principle of homogeneity of dimensions is a rule that
states that the dimensions of all terms in a physical expression
should be the same. This principle is based on the fact that only
physical quantities of the same kind can be added, subtracted,
or compared. This principle is used to check the correctness
and consistency of equations and mathematical relationships in
various scientific fields.

Buckingham IT Theorem
In a physical problem including n dimensional variables in
which there are m dimensions, the variables can be arranged

into r = n — M independent nondimensional parameters IT,
(where usually M =m).

F(Al, Az, cees An) =0
f(H1, Hz, Hr) =0

Ai’s = dimensional variables required to formulate problem

(i=1,n)
ITj’s = nondimensional parameters consisting of groupings
of A’'s(j=1,r)

F, f represents functional relationships between A,’s and
I1;’s, respectively

M = rank of dimensional matrix
=m (i.e., number of dimensions) usually
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Dimensional Analysis

Methods for determining IT;’s

1. Functional Relationship Method

Identify functional relationships F(A;) and f(I) by first
determining Ai’s and then evaluating IT;’s

a. Inspection Intuition
b. Step-by-step Method text
c. Exponent Method class

2. Nondimensionalize governing differential equations and
initial and boundary conditions

Select appropriate quantities for nondimensionalizing the
GDE, IC,and BC e.g. for M, L, and t

Put GDE, IC, and BC in nondimensional form
Identify TT;’s
Exponent Method for Determining IT;’s

1) determine the n essential quantities
2) select M of the A quantities, with different dimensions,

that contain among them the M dimensions and use
them as repeating variables together with one of the
other A guantities to determine each IT.
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For example, let A;, Az, and As contain M, L, and t (not
necessarily in each one, but collectively); then the II;
parameters are formed as follows:

Determine exponents
such that I'Ti’s are
| dimensionless

IT, = ASA%AZA,
[T, - AALALA,
Hn_m — A:)L(nfm A%’n—m A:Z))nfm An

3 equations and 3
) unknowns for each TIT;

In these equations the exponents are determined so that
each IT is dimensionless. This is accomplished by
substituting the dimensions for each of the A; in the
equations and equating the sum of the exponents of M, L,
and t each to zero. This produces three equations in three
unknowns (X, y, t) for each I'Tparameter.

In using the above method, the designation of M = m as
the number of basic dimensions needed to express the n
variables dimensionally is not always correct. The correct

value for M is the rank of the dimensional matrix, i.e., the
next smaller square subgroup with a nonzero determinant.

Dimensional matrix = AL An
M ann ......... din
L
a; = exponent
d31 ..., d3in of M. L. or tin
0O .. (0] A
s I 0 n X n matrix

Rank of dimensional matrix equals size of next smaller
sub-group with nonzero determinant
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Example: Hydraulic jump
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Say we assume that

V1= Vi(y, W, Y1, Y2) Y =pg

™or V.= Viyily,

Dimensional analysis is a procedure whereby the functional
relationship can be expressed in terms of r nondimensional
parameters in which r < n = number of variables. Such a
reduction is significant since in an experimental or
numerical investigation a reduced number of experiments
or calculations is extremely beneficial

V bl .
‘ ///>¢ 1) v, y2 fixed; vary p| Represents
SN 2) v, u fixed; vary y, + many, many
L 3) y,, ufixed; vary y | experiments
3y
Ingeneral:  F(A1, Az, ..., An) =0  dimensional form

f(ITy, IT2, ... I1;) =0 nondimensional
form with reduced
or [Ty =111 (I, ..., IT;)  # of variables
It can be shown that
PV _f

5ol
ooy Uy

neglect u (p drops out as will be shown)
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thus, only need one experiment to determine the functional
relationship

X | F

S / 1 2 T
/ E. = Ex(l + x) 1 | 61
2 111

N 2 |17

a > 5 (3.9

For this particular application we can determine the
functional relationship through the use of a control volume
analysis: (neglecting u and bottom friction)
X-momentum equation: > F, =>V,pV-A

Vi _, Y2 .
Y= =17 = Vip(=Viyy )+ Vap(Voy, ) plote: each term

2 2 in equation must
have some units:

z()’12 Y5 ): g(szyz - V12Y1) principle of

2 dimensional
homogeneity,
o ] I.e., in this case,
continuity equation: V1iy1 = Va2 force per unit
width N/m
V, = Viyi
Y
2 2
i 1{&} zvlzzyl(h_ j
2 Y1 g \Y2
pressure forces = inertial forces

due to gravity
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o
now divide equation by L
gy,
2
Vi_1y, (1+ yzj « dimensionless equation
ay; 2y, Y1

ratio of inertia forces/gravity forces = (Froude number)?

note Fr = Fr(y2ly1) do not need to know both y;
and y1, only ratio to get F,

Also, shows in an experiment it is not necessary to vary

v, Y1, Y2, V1, and V2, but only F; and y./y1

Next, can get an estimate of h. from the energy equation
(along free surface from 1—2)

VA V2

L 4y, =—2+y,+h
2 Y1 2 Yo L
h _(Y2_Y1)3
L=

4y,Y,

# f(u) due to assumptions made in deriving 1-D steady
flow energy equations
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Exponent method to determine IT;’s for Hydraulic jump

F ,V ) ) ) ) : O
use V=V, y1, p as (. ViyLyzol)

repeating variables S e

H1:VX1Y1ylp21u m=3 = r=n-m=3
— (LT-l)xl (L)yl (M L-3)zl ML-lT-l

L X1+y1—321—1:0 y1:321+1—X1:-1

T -X1 -1=0 X1:-1
M z; +1=0 Z1=-1
_py,V

n==6

Assume M =m to
avoid  evaluating
rank of 6 X 6
dimensional matrix

M, =—F— o Ijt= = Reynolds number = Re
m

- py,V

I, = /%2 yly2 pzz g
— (LT-l)XZ (L)yZ (M L-3)22 LT-Z
L Xo+y»—322+1=0 Vo= —1-X2=1

T -X2 -2=0 X2 = -2
M z,=0
V
I, =V 2y,g=21 I1,"% = = Froude number
’ Ve VY,

=Fr

I3 = (LT-l)XB (L)y3 (M L-3)23 Yz

L x3+y3+323+1:0 y3:—1
T -X3 = 0

M -3z23=0
I, = Y2 ;' = DA depth ratio
Y1 Y2

f(Hl, I, Hg) =0
or IDb= Hz(Hl, H3)



ME:5160 Intermediate Mechanics of Fluids Fall 2023 Chapter 5
Professor Fred Stern 10

e., Fr=F«(Re, ya/y1)
if we neglect u then Re drops out

A0
gy, Y1
Note that dimensional analysis does not provide the actual

functional relationship. Recall that previously we used
control volume analysis to derive

% ZEY2(1+Y2J
ay: 2y, Y1

the actual relationship between F vs. ya2/y:

F = F(Re, F, yi/y2)
or Fr=F(Re, yily>)

dimensional matrix:

g Vi yi Y2 p pn
M |0 O O 0 1 1
L 1 1 1 1 3 -1 Size of next smaller
t 2 -1 0 0 0 -1 subgroup with nonzero
O 0 O 0 O 0 determinant = 3 = rank
0 0 0 0 0 0 of matrix
0 0 0 0 0 O
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Example: Derivation of Kolmogorov Scales Using
Dimensional Analysis

Nomenclature
I, ---- length scales of the largest eddies

n ---- length scales of the smallest eddies (Kolmogorov scale)
u, ---- velocity associated with the largest eddies

u, ---- velocity associated with the smallest eddies
7, ---- time scales of the largest eddies

7, ---- time scales of the smallest eddies

Assumptions:

1. For large Reynolds numbers, the small-scales of motion (small
eddies) are statistically steady, isotropic (no sense of
directionality), and independent of the detailed structure of the
large-scales of motion.

2. Kolmogorov’s (1941) universal equilibrium theory: The large
eddies are not affected by viscous dissipation, but transfer energy
to smaller eddies by inertial forces. The range of scales of motion
where the dissipation in negligible is the inertial subrange.

3. Kolmogorov’s first similarity hypothesis. In every turbulent
flow at sufficiently high Reynolds number, the statistics of the
small-scale motions have a universal form that is uniquely
determined by viscosity v and dissipation rate «.
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Facts and Mathematical Interpretation:

Fact 1. Dissipation of energy through the action of molecular
viscosity occurs at the smallest eddies, i.e., Kolmogorov scales of

motion 7. The Reynolds number (Re, ) of these scales are of order
(1).
Fact 2. EFD confirms that most eddies break-up on a timescale of

their turn-over time, where the turnover time depends on the local
velocity and length scales. Thus, at Kolmogorov scale n/u, = 1,.

Fact 3. The rate of dissipation of energy at the smallest scale is,

£ =V5;S; 1)
1{ou,; ou,; . . i )
where S; =-| —~+—==|is the rate of strain associated with the
2\ ox; O
smallest eddies, S; =u, /7. Which yields,
z=v(u;/n’) 2)

Fact 4. Kolmogorov scales of motion 7, u,, 7, can be expressed as
a function of v, € only.

Derivation:

Based on Kolmogorov’s first similarity hypothesis, the small
scales of motion are function of F(7,u,, 7,,v, €) and determined
by v and € only. Thus, v and ¢ are repeating variables. The
dimensions for v and ¢ are L>t*and 12, respectively.
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Herein, the exponential method is used:

use v and ¢ as repeating variables, m=2= r=n-m=3

(4)

Flnu,,7,,v,e|=0 n

L

HZZ

2 2
L 17 b L

T T

[T, =v*e"n
=(LT 1) (L7 -3)y1 L

2% +2y,+1=0
—X =3y, =0
X1:-3/4 and y1:1/4

ny=n(%)"

X2 ~Y2
Vé‘Uﬂ

=(LT) (LT (LT

2%, +2y,+1=0
—X, =3y, -1=0
Xo= y2:-1/4

I, = u,,/(sv)”“

(3)

()

(6)

(7)

(8)

)

(10)
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L 2%, +2Y,=0
T —X; —3Y,+1=0 (11)
X3=-1/2 and y3=1/2
1/2
0y =1, (5) (12)

Analysis of the [ ] parameters give,

nlxnzzuz—"zRenzl-)Factl (13)
E_i X Il = 1;—"177 =1 = Fact 2 (14)
E_i _ % (5)1/2 =1 = Fact 3 (15)
yields

— I, =M,=MN;=1

Thus, Kolmogorov scales are:

n

(V3/g)]/4 |
v

,=(¢
(v /g) => Fact 4 (16)

Ratios of the smallest to largest scales:

Based on Fact 2, the rate at which energy (per unit mass) is passed
down the energy cascade from the largest eddies is,

IT=ug/(1,/ug) =us /1, (17)
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Based on Kolmogorov’s universal equilibrium theory,
g=u/l, Ev(us/nz)

(18)
Replace ¢in Eqn. (16) using Eqn. (18) and note 7, =1,/u, ,
n/ly = Re™*,
u, /u, =Re ",
z, [T = Re ¥
(19)
where Re=u,l, /v
How large is #?
Cases Re n o lo n
Educational experiments 103 5.6x10°3 ~1lcm 5.6x102 cm
Model-scale experiments 106 3.2x10° ~3m 9.5x10° m
Full-scale experiments 10° 1.8x1077 ~100m | 1.8x10°m

Much of the energy in this flow is dissipated in eddies which are
less than fraction of a millimeter in size!!
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Common Dimensionless Parameters for Fluid Flow Problems

Qualitative ratio

Parameter Definition of effecty Importance
UL Incnia
Reynolds number = ;,T m Almost always
u Flow speed
Mach number Ma = 5 St s Compressible flow
Inettia
S
Froude number Fr < Gravity Free-surface flow
Weber nomber We = ggi;: __'1‘{!1“__.__ Free-surface flow
Y Surface tension
R Flow velocity ical fl
Rossby number o Bl olis effect Geophysi ows
Cavitation number Ca= pl_-@ Lo Inc Cavitation
{Euler number) wry fa
Hep Dissipation -
Prandtl number Pr =~ TR Heat ceavection
k Conduction
U Kinetic energy < ,
Eckert numbesr Ec = ;:"E, m—- Dissipation
» g,
X z _w Cathalyry
Specific-heat ratio 2 T PR pes Compressible flow
Strovhal number St = %—L _MOS;_:ﬁQ% Oscillating Flow
Wall roughness
Roughness ratio E W Turbulent, rough walls
PATsL}p? Buoyancy )
Grashof number Gr= - - Natural convection
w Viscosity
) BATel’p’c,  Buoyancy )
Rayleigh number Ra = A Viscosity Natwral convection
? ¥ o2 Wall temperuture
Temgerature ratio Fo 3 P Heat transfer
Pressurc coefficient C o iead m— Aerodynamics, hydrodynamics
i Dynamic pressure o o
> : L Lift force < ;
Lift coeffictent C.= oA Dynamic force Acrodynamics, hydrodynamics
D Drag force
Drag coefficient =g -Dyn—:fﬁm Aerodynamics, hydrodynamics
fiy Friction head loss
Te 1t —— — ———— A————— » n
Tt fawox = (V2g)(Lid) Velocity head et

Skin friction coefficient

Toat

¥ 3
* pvR

Wall shear stress

e — e — ——

Dynamic pressure

Boundary layer flow
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Nondimensionalization of the Basic Equation

It is very useful and instructive to nondimensionalize the
basic equations and boundary conditions. Consider the
situation for p and p constant and for flow with a free
surface

Continuity: V-V =0

Momentum: p% =—V(p+yz)+uvVv

\pg = specific weight
Boundary Conditions:
1) fixed solid surface: V=0

2) inletoroutlet: V=V, p=po

3) freesurface: w= 2—? P=P, —Y(R§1 + R§1)

(z=m) surface tension

All variables are now nondimensionalized in terms of p and
U = reference velocity

L = reference length

v =Y t*:y
- U L

*_ X p+p9z
X == =T
X =7 p oU?

All equations can be put in nondimensional form by
making the substitution
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V=VU
o_9dda _Uo
o ot ot Lot
ve 211954 9%
oXx oy o0z

_ 6‘*8X i+ 8*8y 'J:+ 8*62 R
OX OX oy oy o0z oz
1

Sl vl
L
and a—U:EE*(UU*):E&I* etc.
oX Lx L ox
Result: V*-\_/*:
DV _ PR Yy
Dt oVL
* %_/
1) V =0 ™~ Re!
« V po
2) Vv =o *
)V U p V2
3) W*=an*
ot

Pressure coefficient  Fr? Wel
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Similarity and Model Testing

Flow conditions for a model test are completely similar if
all relevant dimensionless parameters have the same
corresponding values for model and prototype

I'Ti modet = ITi prototype I1=1,r=n- m (m)
Enables extrapolation from model to full scale
However, complete similarity usually not possible

Therefore, often it is necessary to use Re, or Fr, or Ma
scaling, i.e., select most important IT and accommodate
others as best possible

Types of Similarity:

1) Geometric Similarity (similar length scales):
A model and prototype are geometrically similar if and
only if all body dimensions in all three coordinates have
the same linear-scale ratios
o=Ln/ly, (a<1)

\ 1/10 or 1/50
2) Kinematic Similarity (similar length and time scales):
The motions of two systems are kinematically similar if
homologous (same relative position) particles lie at
homologous points at homologous times
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3) Dynamic Similarity (similar length, time and force (or
mass) scales):
in addition to the requirements for kinematic similarity
the model and prototype forces must be in a constant
ratio

Model Testing in Water (with a free surface)

F(D,L,V,g,p,v) =0
n=6and m=3thusr=n-m =3 piterms
In a dimensionless form,

f(Cp,Fr,Re) =0

or
Cp = f(Fr,Re)
where
D
©TT
|4
Fr=—
VgL
VL
Re = —
sV
I Frm=Frpor\/Z"L’_m=\/ngp

Vo, = ngVp = +vaV,,  Froude scaling
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— VimLm — VPLP
and Re,, = Re, or =

Um Vp
Um VmLm
== VL =a1/2a=a3/2
Up plp
Then,
_ Dm - Dp
CDm — CDp or 272 T V212
PmVmLm PpVp Lp

However, impossible to achieve, since
if a=110 v, =3.1x10°m?/s <1.2x107 m?/s

For mercury v =1.2x107" m?/s

Alternatively, one could maintain Re similarity and obtain

Vm = Vp/(l
Butif @ =110, V,, =10V

High speed testing is difficult and expensive.

VY
o Y N o Y
gm _Vnzw Lp
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2
gm :Vm Lp
2
gp Vp Lm
1 1 _
g_m__zx_:a 3
9p a° «
g =2
m
OL3

Butif =110 0y =10 Ong

Impossible to achieve

Model Testing in Air

F(D,L,V,p,v,a) =0
n=6and m=3thusr=n-m =3 pi terms
In a dimensionless form,

f(Cp,Ma,Re) =0

or
Cp = f(Re,Ma)
where
D
Cp = T
EIOVZLZ
VL
Re =
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If Vinkm _ VoL and Vi Yo
Vi v, an  a,
Then,
D D
Cp,, = Cp_ oOr 1;1 2 2 2
p PmVmLm PpVp Ly
1
v L |a
However, —™ = —M| —M | =g
vo Lplap

not easily achieved. Need fluid
with high speed of sound and low viscosity.
https://history.nasa.qov/SP-440/ch6-15.htm

To

steam
ejector

Vacuum
isolation valve

iidgtaz nozzle throat

instrumentation

16000 psi
storage

This helium blowdown tunnel at Ames attained Mach 50. Despite Its
very low liquefaction point, the helium had to be heated to 1500 ° F to
preclude any liquefaction during expansion.

Therefore, in wind tunnel testing Re scaling is also usually
violated


https://history.nasa.gov/SP-440/ch6-15.htm
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In hydraulics model studies, Fr scaling used, but lack of We
similarity can cause problems. Therefore, often models are
distorted, i.e., vertical scale is increased by 10 or more
compared to horizontal scale

Fig. 5.8 Hydraulic model of the Isabella Lake Dam Safety Modification Project. The model scale is 1:45, and was built in 2014 at
Utah State University’s Water Research Laboratory. (Courtesy of the U.S. Army photo by John Prettyman/Released.)

Vertical scale distorted to avoid Weber number effects, i.e.,
horizontal scale is 1:1000 vs. vertical scale is 1:100: thus,
model is deeper relative to its horizontal dimensions

Ship model testing:
Ct = (Re, F) = Cu(Fr) + Cy(Re)

Cwm=Cim—-C
Vm determined e Based on flat plate of

for F, scaling Cre = Cum + Cy same surface area



